首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程y’’+2y’+2y=e-xsinx的特解形式为 ( )
微分方程y’’+2y’+2y=e-xsinx的特解形式为 ( )
admin
2015-08-17
80
问题
微分方程y’’+2y’+2y=e
-x
sinx的特解形式为 ( )
选项
A、e
-x
(Acosx+Bsinx)
B、e
-x
(Acosx+/3zsinx)
C、xe
-x
(Acosx+Bsinx)
D、e
-x
(ATcosx+Bsinx)
答案
C
解析
特征方程r
2
+2r+2=0即(r+1)
2
=一1,特征根为r
1,2
=一1±i.而λ±iw=一1±i是特征根,特解y
*
=xe
-x
(Acosx+Bsinx).
转载请注明原文地址:https://www.kaotiyun.com/show/V1w4777K
0
考研数学一
相关试题推荐
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
求解下列方程:(Ⅰ)求方程xy"=y’lny’的通解;(Ⅱ)求yy"=2(y’2-y’)满足初始条件y(0)=1,y’(0)=2的特解.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>-2f(x)/x,证明:c是唯一的.
假设曲线l1:y=1-x2(0≤x≤1)与x轴和y轴所围成区域被曲线l2:y=ax2分为面积相等的两:部分,其中a是大于零的常数,试确定a的值.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πcosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
一个袋内装有5个白球,3个红球.第一次从袋内任意取一个球,不放回,第二次又从袋内任意取两个球,Xi表示第i次取到的白球数(i=1,2).求:P{X1=0,X2≠0},P{X1=X2},P{X1X2=0}.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.(1)求A的特征值和特征向量.(2)求作正交矩阵Q和对角矩阵∧,使得
随机试题
A乳化剂类型改变B微生物及光、热、空气等作用C分散相与连续相存在密度差DZeta电位降低E乳化剂失去乳化作用乳剂分层的原因是
男,58岁,进食梗阻感,结合图像,最可能的诊断为
某女,30岁,分娩时出血量多,产后又失于调养,出现低热不退,腹痛绵绵,喜按,恶露量少,色淡质稀,自汗,眩晕心悸,舌质淡,苔薄白,脉细数,治法应选()
项目投资机会研究中,在论证投资方向时,需进行初步分析的内容包含()。
根据《铁路技术管理规程》,机车车辆无论空、重状态,均不得超出机车车辆限界,其最高点至()的距离不得超过4800mm,其两侧最大宽度不得超过3400mm。
班杜拉把强化分为三种:直接强化、替代强化与______。
WhenMaryMoorebeganherhighschoolin1951,hermothertoldher,"Besureandtakeatypingcoursesowhenthisshowbusiness
试根据斯金纳的理论,简述正强化、负强化、惩罚三者之间的区别。
ABiologicalClockEverylivingthinghaswhatscientistscallabiologicalclockthatcontrolsbehavior.Thebiologicalclo
Theindustrialagehasbeentheonlyperiodofhumanhistoryinwhichmostpeople’sworkhastakentheformofjobs.Theindustr
最新回复
(
0
)