首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0,证明:存在ξ∈(0,1),使得∫0ξf(x)dx=ξf(ξ).
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0,证明:存在ξ∈(0,1),使得∫0ξf(x)dx=ξf(ξ).
admin
2021-11-25
72
问题
设f(x)在[0,1]上连续,f(0)=0,∫
0
1
f(x)dx=0,证明:存在ξ∈(0,1),使得∫
0
ξ
f(x)dx=ξf(ξ).
选项
答案
令[*],因为f(x)在[0,1]上连续,所以ψ(x)在[0,1]上连续,在(0,1)内可导,又ψ(0)=0,ψ(1)=∫
0
1
f(x)dx=0,由罗尔定理,存在[*],所以∫
0
ξ
f(x)dx=ξf(ξ).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Uay4777K
0
考研数学二
相关试题推荐
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
设a1,a2...an为n个n维列向量,证明:a1,a2,...an线性无关的充分必要条件是.
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵。
设A为n阶非奇异矩阵,a是n维列向量,b为常数,.证明PQ可逆的充分必要条件是aTA-1a≠b.
随机试题
对绿脓杆菌和抗药金黄色葡萄球菌均无效的药物为( )。
下列关于化学反应速率常数k的说法正确的是:
建设工程勘察合同的承包方必须持有的证件不包括()。
关于财务报表附注的说法,错误的是()。
时间序列的速度分析指标有()。
关于产品的认识,正确的看法是()。
两个IQ分数相同的儿童,他们IQ分数的构成完全相同。()
假设“如果甲是经理或乙不是经理,那么丙是经理”为真,由以下哪个前提可推出“乙是经理”的结论?
A、TRUEB、FALSEB
Itisawisefatherthatknowshisownchild,buttodayamancanboosthispaternal(fatherly)wisdom—oratleastconfirmthat
最新回复
(
0
)