首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( ).
[2010年] 设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( ).
admin
2019-05-10
105
问题
[2010年] 设y
1
,y
2
是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
一μy
2
是该方程对应的齐次方程的解,则( ).
选项
A、λ=1/2,μ=1/2
B、λ=一1/2,μ=一1/2
C、λ=2/3,μ=1/3
D、λ=2/3,μ=2/3
答案
A
解析
将λy
1
+μy
2
代入非齐次方程,同时将λy
1
一μy
2
代入对应的齐次方程,可得到关于λ,μ的两个方程,解之即可求得λ,μ.
利用解的定义和性质求之.由命题1.6.2.1(2)知,λy
1
一μy
2
是y′+P(x)y=0的解,故
(λy-μy
2
)′+P(x)(λy
1
一μy
2
)=0, 即 λ[y′
1
+P(x)y
1
]一μ[y′
2
+p(x)y
2
]=0,
亦即λq(x)-μq(x)=(λ一μ)q(x)=0,故λ=μ.又由题设知y
1
,y
2
为y′+p(x)y=g(x)的解,故
y′
1
+P(x)y
1
=q(x), y′
2
+P(x)y
2
=q(x),
因λy
1
+μy
2
是y′+P(x)y=q(x)的解,故
(λy
1
+μy
2
)′+P(x)(λy
1
+μy
2
)=q(x).
即 λ[y′
1
+P(x)y
1
]+μ[y′
2
+P(x)y
2
]=λq(x)+μq(x)=(λ+μ)q(x)=q(x).
从而μ+λ=1,又由λ=μ得λ=μ=1/2.仅(A)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/UNV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
求曲线y=2e-χ(χ≥0)与χ轴所围成的图形的面积.
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明:∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
考虑二次型f=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3,问λ取何值时,f为正定二次型?
a,b取何值时,方程组有解?
函数y=χ+2cosχ在[0,]上的最大值为_______.
设A=有三个线性无关的特征向量,则a=_______.
随机试题
提存
以下哪些不是实秘的主要病因病机
男性,65岁,因心脏骤停进行心肺复苏术。下述哪项叙述是恰当的
下列关于药物用法用量的叙述错误的是
《药品说明书规范细则》(暂行)明确化学药品说明书的药品名称包括
下列信息中,属于项目决策阶段需要收集的是()。
双币债券
现代商业银行的财务控制部门通常采取()的方法,及时捕捉市场价格/价值的变化。
毛泽东的军事思想认为,指导战争的关键是()。
人类发展进步的一个重要表现,就是人类对世界的认识程度越来越深,对风险的控制能力越来越强。随着移动社会化媒体的广泛应用、物联网的广泛覆盖,人与人、物与物、人与物之间的联接越来越多,世界变得越来越小。更重要的是,随着大数据处理能力和云计算技术的日益成熟,人们对
最新回复
(
0
)