首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证: (Ⅰ)f(x)>0(x∈(0,1)); (Ⅱ)自然数n,存在唯一的xn∈(0,1),使得.
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证: (Ⅰ)f(x)>0(x∈(0,1)); (Ⅱ)自然数n,存在唯一的xn∈(0,1),使得.
admin
2017-11-23
84
问题
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证:
(Ⅰ)f(x)>0(x∈(0,1));
(Ⅱ)
自然数n,存在唯一的x
n
∈(0,1),使得
.
选项
答案
(Ⅰ) 由题设条件及罗尔定理, [*] => f(x)>f(0)=0(0<x≤a, f(x)>f(1)=0(0≤x<1), => f(x)>0(x∈(0,1)). (Ⅱ) 由题设知存在x
M
∈(0,1)使得f(x
M
)=M>0. 先证[*]是f’(x)的某一中间值.因f’(x
M
)=0,由拉格朗日中值定理,存在ξ
n
∈(0,x
M
)使得 [*] 这里f’(x)在[ξ
n
,x
M
]连续,再由连续函数中间值定理=>存在x
n
∈(ξ
n
,x
M
)[*](0,1),使 得 [*] 最后再证唯一性.由f’’(x)<0(x∈(0,1))=>f’(x)在(0,1)单调减少=>在区间(0,1)内 [*] 的点是唯一的,即x
n
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/U8r4777K
0
考研数学一
相关试题推荐
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________。
A、绝对收敛B、条件收敛C、发散D、敛散性与k有关A
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
计算曲线y=ln(1-x2)上相应于的一端弧的长度.
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).求二维随机变量(U,V)的联合分布;
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为___________.
设随机变量X的数学期望.EX=75,方差DX=5,由切比雪夫不等式估计得P{|X一75|≥k}≤0.05,则k=________.
设A,B是n阶矩阵,则下列结论正确的是()
随机试题
简述洋务派的形成。
只有当田教授和李教授都讲课时,阎教授才会讲课。阎教授没讲课,所以田教授一定没讲课,而且李教授也没讲课。以下哪项与题干的逻辑结构最为相似?
下列关于楔束的描述正确的是
下列泻下粪便巾辨出何为湿热泄泻的特点
预防性抗疟疾药是
临床麻醉中很少用作局部浸润的药物是
(2014年国家司法考试真题)甲县的葛某和乙县的许某分别拥有位于丙县的云峰公司50%的股份。后由于二人经营理念不合,已连续四年未召开股东会,无法形成股东会决议。许某遂向法院请求解散公司,并在法院受理后申请保全公司的主要资产(位于丁县的一块土地的使用权)。关
根据以下资料,回答问题。2012年规模以上工业中,农副食品加工业增加值比上年增长13.6%,纺织业增长12.2%,通用设备制造业增长8.4%,专用设备制造业增长8.9%,汽车制造业增长8.4%,计算机、通信和其他电子设备制造业增长12.1%,电
请在下面代码中加入监听器语句。importjava.awt.*;importjava.applet.Applet;publicclassSimpleextendsAppleimplementsMouseListener{S
Therestiseasyifonecanfindsomeonewhoknowsthepricesofsuchthingsasstationery,pocketcalculatorsorthatisneeded
最新回复
(
0
)