首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
admin
2016-03-16
96
问题
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
选项
答案
令φ(x)=f9x)一g(x),根据f(a)=g(a),f(b)=g(b),则有φ(a)=φ(b)=0。设x
1
,x
2
∈(a,b),且[*],已知f(x)和g(x)在(a,b)内存在相等的最大值,因此f(x
1
)=g(x
2
),于是φ(x
1
)=f(x
1
)一g(x
1
)≥0,φ(x
2
)=f(x
2
)一g(x
2
)≤0。如果φ(x
1
)=0或φ(x
2
)=0,则令η=x
1
,或x
2
,有φ(η)=0;如果φ(x
1
)>0,φ(x
2
)<0,根据零点定理,存在η∈(x
1
,x
2
),使得φ(η)=0。此时φ(x)在[a,b]上有3个不同的零点a,η,b,在区间[a,η]和[η,b]上分别应用罗尔定理,则存在ξ
1
∈(a,η),ξ
2
∈(a,b),满足φ’(ξ
1
)=φ’(ξ
2
)=0,再在[ξ
1
,ξ
2
]上继续应用罗尔定理可知,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’’(ξ)=0,即f’’(f)=g’’(ξ)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/U7U4777K
0
考研数学三
相关试题推荐
人无精神不立,国无精神不强。中华儿女在磨难中铸就的精神财富是中华民族历经沧桑却生生不息,苦难深重却延绵不绝的强大精神支撑。中华民族最重要的精神财富是
法律义务是指反映一定的社会物质生活条件所制约的社会责任,是保障法律所规定的义务人应该按照权利人要求从事一定行为或不行为以满足权利人利益的法律手段。法律义务的特征是
正当程序是现代法治的重要底色,是权力滥用的消毒剂、公民权利的保障书。正当程序使得普通公民不再仅仅是消极等待公权力作用于其的客体,而是能积极参与国家和社会事务管理、掌握自己命运、捍卫自己权利的主体。程序的正当表现在
弘扬爱国主义精神,就要深入了解中华民族5000多年源远流长的文明史,不断加深对祖国悠久历史、灿烂文化的认同,从世代积累沉淀的中华文化中汲取营养和智慧,自觉延续文化基因、萃取思想精华。这是因为,文化传统是
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
随机试题
【背景资料】A公司中标一地下工程,其中基坑深6m,A公司采用明挖基坑喷锚支护的方法,施工方案得到批准。由于工期较紧,中标后A公司把基坑土方开挖分包给不具备安全资质的B公司。B公司施工时把大量挖土弃置于基坑项部,建设单位及监理单位发现后及
卡普兰和诺顿提出的平衡积分卡是一种全面、综合的控制方法,平衡积分卡的控制指标有________、顾客、内部经营过程、学习和成长四个方面。
易恶变的卵巢良性上皮肿瘤是下列哪项
()是根据事故的数学模型,应用数学方法,求取事故对人员的伤害范围或对物体的破坏范围的安全评价方法。
( )是指为维持生产所占用的全部周转资金。
下列各项中,制造企业应确认为无形资产的是()。
在配送中心每天的营运作业里,()是一切作业的开始。
我国《教师法》规定,教师是()。
公安机关服从中国共产党的领导,必须是()。
设连续型随机变量X的密度函数和分布函数分别为f(x)与F(x),则().
最新回复
(
0
)