首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
admin
2019-01-19
83
问题
设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,向量β
2
不能由α
1
,α
2
,α
3
线性表示,则必有( )
选项
A、α
1
,α
2
,β
1
线性无关。
B、α
1
,α
2
,β
2
线性无关。
C、α
2
,α
3
,β
1
,β
2
线性相关。
D、α
1
,α
2
,α
3
,β
1
+β
2
线性相关。
答案
B
解析
由α
1
,α
2
,α
3
线性无关,且β
2
不能由α
1
,α
2
,α
3
线性表示知,α
1
,α
2
,α
3
,β
2
线性无关,从而部分组α
1
,α
2
,β
2
线性无关,故B为正确答案。下面证明其他选项均不正确。
取α
1
=(1,0,0,0)
T
,α
2
=(0,1,0,0)
T
,α
3
=(0,0,1,0)
T
,β
2
=(O,0,0,1)
T
,β
1
=α
1
,知A与C两项错误。
对于选项D,由于α
1
,α
2
,α
3
线性无关,若α
1
,α
2
,α
3
,β
1
+β
2
线性相关,则β
1
+β
2
可由α
1
,α
2
,α
3
线性表示,而β
1
可由α
1
,α
2
,α
3
线性表示,从而β
2
可由α
1
,α
2
,α
3
线性表示,与假设矛盾,从而D项错误。故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/TbP4777K
0
考研数学三
相关试题推荐
(98年)设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1一2X2)2+b(3X3-4X4)2.则当a=_______,b=_______时,统计量X服从χ2分布,其自由度为_______.
(08年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则【】
(02年)设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)χ=0【】
(15年)设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_______.
(08年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则【】
(09年)设二次型f(χ1,χ2,χ3)=aχ12+aχ22+(a-1)χ32+2χ1χ3-2χ2χ3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型厂的规范形为y12+y22,求a的值.
(09年)袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
设随机变量X在区间(-1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
随机试题
甲将其所有的房屋出租给乙,双方口头约定租金为每年7万元,乙可以一直承租该房屋,直至乙去世。房屋出租后的第二年,乙为了经营酒店,经甲同意,对该房屋进行了装修,共花费8万元。一天晚上,一失控的汽车撞到该房屋,致使其临街的玻璃墙毁损,肇事司机驾车逃逸,乙要求甲维
行为人在实施抢劫行为后,出于灭口的目的而将被害人杀害,对行为人的行为认定正确的是()
根据《刑法》,下列关于以盗窃、利诱、胁迫或者其他不正当手段获取权利人的商业秘密的,并给商业秘密的权利人造成一定损失的惩处,正确的有()。
承包人在临街交通要道附近施工,施工开始前应向工程师提出安全措施,工程师认可后实施,其防护措施费由( )。
某市一家彩电生产企业,为增值税一般纳税人。适用企业所得税税率25%。2013年生产经营业务如下:(1)全年直接销售彩电取得销售收入8000万元(不含换取原材料的部分),全年购进原材料,取得增值税专用发票,注明税款850万元(已通过主管税务机关认证)。(
控制决策的一般步骤包括()。
《学记》说:“虽有佳肴,弗食,不知其旨也;虽有至道,弗学,不知其善也。是故学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。故曰:教学相长。”这是()。
伊达拉量亚文明
唐朝官营手工业中,每年服役二十天,在政府“趋役不尽及别有和雇"的情况下,可“纳资代役”的是()。
格塞尔的爬梯实验证明了
最新回复
(
0
)