首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=. 求可逆矩阵P,使P—1AP为对角矩阵.
设矩阵A=. 求可逆矩阵P,使P—1AP为对角矩阵.
admin
2018-08-03
36
问题
设矩阵A=
.
求可逆矩阵P,使P
—1
AP为对角矩阵.
选项
答案
由于矩阵A与B相似,所以它们有相同的特征多项式: |λE一A|=|λE一B|=(λ一1)
2
(λ一5) 由此得A的特征值为 λ
1
=λ
2
=1,λ
3
=5 对于Aλ
1
=λ
2
=1,解方程组(E一A)x=0,有 [*] 得对应于λ
1
=λ
2
=1的线性无关特征向量ξ
1
=[*] 对于λ
3
=5,解方程组(5E—A)x=0,由 [*] 得对应于λ
3
=5的特征向量ξ
3
=[*] 令矩阵P=[ξ
1
ξ
2
ξ
3
]=[*] 则矩阵P可作为所求的可逆矩阵,使得 P
—1
AP=[*]为对角矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Srg4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Z=近似服从正态分布,并指出其分布参数.
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xn与Y1,Y2,…,Yn分别为来自两个总体的简单样本,S12=服从___________分布.
设总体X~N(0,8),Y~N(0,22),且X1及(Y1,Y2)分别为来自上述两个总体的样本,则~___________。
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ—η=(ea+eb)[f’(η)+f(η)].
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
求幂级数的和函数.
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
随机试题
A.癌肿直径>15cm,常有出血坏死B.癌结节直径
桡骨颈骨折可能损伤何神经?可能出现的主要症状?
腹腔镜胆囊切除术应采取的体位是
(2004)在图示情况下,为了防止保温层受潮,隔汽层应设置在何处?
已知:某公司2018年销售收入为20000万元,销售净利率为12%,净利润的60%分配给投资者。2018年12月31日的资产负债表(简表)如下:该公司2019年计划销售收入比上年增长30%,为实现这一目标,公司需新增设备
2018年,某市法院受理了下列民间借贷合同纠纷。(1)1998年,王某向刘某借款2万元并出具借条。后刘某多次催要,王某一直拒不还款。2017年底,刘某将王某诉至法院。王某辩称此案已超过3年诉讼时效。人民法院认为刘某多次催要欠款的行为引起了诉讼时效的中断,
运行下列程序,结果是PrivateSubCommand2_Click()f0=1:f1=1:f2=1:k=1DoWhilek
•Readthetextbelowabouttimemanagement.•Inmostofthelines(41-52)thereisoneextraword.Itiseithergrammatically
SexisminEnglishSexisminEnglishlanguagereflectsthetraditionalethicsthatmenaresuperiortowomen.Here,fouraspects
A、Rogerpreferstoliveintown.B、Juliapreferstoliveinavillage.C、Rogerpreferstolivewithfamiliarneighbors.D、Julia
最新回复
(
0
)