首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
admin
2019-12-24
87
问题
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。
若α=(0,-1,1)
T
,β=(1,0,-1)
T
,求矩阵A。
选项
答案
A的三个特征向量为 γ=(1,1,1)
T
,α+β=(1,-1,0)
T
,α-β=(-1,-1,2)
T
, 令P=(γ,α+β,α-β),Λ=[*], 则P
-1
AP=Λ,所以A=PΛP
-1
=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/SmD4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)的概率密度函数为f(x,y),则随机变量(2X,Y+1)的概率密度函数f1(x,y)=_______.
设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B可逆.
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
设A,B都是n阶正定矩阵,则:AB是正定矩阵A,B乘积可交换.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数k满足什么条件时A+kE正定?
A=.则()中矩阵在实数域上与A合同.
(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
随机试题
根据《中华人民共和国药品管理法》对药品的界定,下列不属于药品的是()。
某国有企业厂因不能清偿到期债务而决定申请破产重整,对企业实施拯救。其拯救措施之一是进行裁员。根据有关法律规定,请回答问题。不得被裁减的企业人员有:
下列固体废物中,不适用《危险废物贮存污染控制标准》的是()。
施工图预算审查方法有()。
根据《水利水电工程施工质量检验与评定规程》SL176—2007的规定,水利水电工程施工质量等级分为()级。
(2017·河北)一般而言,学生的成就动机来源于三种需要。下列选项中,不属于成就动机源泉的需要是()
某省人民政府的规章与国务院某一部门的规章不一致,按照法律规定,下列做法正确的是:
Wecanalwayschangethedatesofourtrip,______it’snecessary.
H.G.Wellsisoneofthemostfamouswritersof______fiction.
A、Duringmatingseason.B、Exceptduringthematingseason.C、Alltheyearround.D、Onlyinspring.B该问题在文中较靠后的地方有所提及(Mostblack
最新回复
(
0
)