首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-10-20
56
问题
设A=
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)对增广矩阵(A :ξ
1
)作初等行变换,有 [*] 得Ax=0的基础解系(1,-1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,-1,2)
T
或ξ
2
=(k,一k,2k+1)
T
,其中k为任意常数. 因为A
2
=[*],对增广矩阵(A
2
:ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(-1,1,0)
T
,(0,0,1)
T
.又A
2
x=ξ
1
有特解 [*] 其中t
1
,t
2
为任意常数. (Ⅱ)因为 [*] 所以ξ
1
,ξ
2
,ξ
3
必线性无关.
解析
其实求ξ
2
和ξ
3
就是分别求方程组Ax=ξ
1
与方程组A
2
x=ξ
1
的通解.
转载请注明原文地址:https://www.kaotiyun.com/show/SgT4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
设f(x)为正值连接函数,f(0)=1,且对任一x>0,曲线y=f(x)在区间[0,x]上的一段弧长等于此弧段下曲边梯形的面积,求此曲线方程.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设函数F(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,试证必存在ξ∈(0,3),使fˊ(ξ)=0.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
随机试题
[背景资料]某施工单位承接了南方一座双向四车道分离式隧道施工,隧道穿越的地层有:石灰岩、页岩、泥灰岩,局部夹有煤层,该隧道穿越一向斜构造。隧道进出口围岩为V级,洞内Ⅲ级和Ⅳ级呈间隔分布,局部为V级。其中左线隧道进口桩号为K15+270,设
属于物理爆炸的是()。
甲、乙、丙三人一起从事烟草生意。某次三人一同前往A市购货,同住在A市某宾馆,甲、乙晚上出外游玩,将装有8万元现金的皮箱交由丙保管。丙碰到朋友丁,在餐厅喝得大醉,被丁送回后在房间昏睡到第二天中午,醒来后发现皮箱已经不知所踪。甲、乙和宾馆交涉未果,即向法院起诉
负责组织水利水电工程施工总承包一级以上资质等单位的人员安全生产知识能力考核的单位是()。
法院受理破产申请后,首先应做的一项工作是()。
与一维条形码相比,二维码具有数据容量更大、编码超越字母数字的限制、有抗损毁能力等方面的优势,目前已得到广泛应用。下列关于二维码的表述,错误的是()。
在世界总人口中,男女比例相当,但黄种人是大大多于黑种人的,在其他肤色的人种中,男性比例大于女性。由此可见()
教师的专业素质包括哪些?
Hehassuch______thatheisquickatlearninganything.
ItisinterestingtoreflectforamomentuponthedifferencesintheareasofmoralfeelingandstandardsinthepeoplesofJa
最新回复
(
0
)