首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例: 某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标: ①掌握勾股定理的内容,体会数形结合思想; ②学会运用勾股定理。 为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
案例: 某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标: ①掌握勾股定理的内容,体会数形结合思想; ②学会运用勾股定理。 为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
admin
2022-08-05
88
问题
案例:
某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:
①掌握勾股定理的内容,体会数形结合思想;
②学会运用勾股定理。
为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
【教师甲】
首先,给大家介绍“赵爽弦图”的内容,板书课题,介绍三角形各边的名称。
然后,提问学生勾股定理的相关知识,给出勾股定理的内容:直角三角形两条直角边的平方和等于斜边的平方。
之后,介绍毕达哥拉斯的探索过程,让学生利用“面积法”验证定理内容。
最后,教师给出练习题(在下面的几组边中,找出能构成直角三角形的边长组合:
①3,3,3;
②3,4,5;
③6,4,9;
④6,8,10),
学生练习。
【教师乙】
先介绍毕达哥拉斯在朋友家的趣事(毕迭哥拉斯在朋友家做客时,发现朋友家的地砖图案反映了直角三角形三边中的某种数量关系),之后让学生去看地砖图形,结合毕达哥拉斯的探索过程(面积法:利用三角形三边分别构成不同的正方形,通过三个正方形的面积关系找到直角三角形三边的关系)自主探索三边关系,得出猜想。
然后,课件给出赵爽弦图,结合图形介绍“赵爽弦图”的证明过程,证明猜想。
最后,得出结论:直角三角形两条直角边的平方和等于斜边的平方。
巩固练习,思考讨论:还有没有不同的方法证明勾股定理的内容?
拓展介绍刘徽的证明方法,使学生感受数形结合,以形证数的思想。
问题:
分析甲、乙两位教师教学思路的特点。
选项
答案
教师甲通过对“赵爽弦图”的介绍直接引入勾股定理的内容,之后结合毕达哥拉斯的探索过程,让学生感受定理内容,最后通过练习题进行知识巩固。这种教学方法以直接导入的方式引入新知,紧扣教学目标,直接给出教学目的,从而有效地引起学生的有意注意,使学生直接进入学习状态;通过介绍毕达哥拉斯的探索过程,诱发学生探索新知的兴趣。虽然这种教学方式能使学生迅速定向,使其可以把握整节课的概念和基本轮廓,能提高课堂效率,但是这种方法由于缺乏学生自主探索的过程,不能使学生充分感受数形结合的思想,不能有效地培养学生独立思考的习惯。此外,课程整体氛同有些枯燥,教师与学生的互动较少,这样难以引发学生的学习兴趣,不能很好地引起学生共鸣。 教师乙首先以讲故事的手段介绍毕达哥拉斯的发现和探索过程,运用趣味导入法引入新知,有效地激发学生对于新知的兴趣。然后,教师让学生运用面积法自主探索新知,提出猜想,培养了学生自主学习的能力,使其感受数形结合思想和以形证数的过程。之后,教师通过介绍“赵爽弦图”的证明方法证明猜想,使学生从不同角度体会数形结合思想,发展形象思维。最后,通过对刘徽证明勾股定理方法的拓展介绍,使学生感受不同的割补方法,充分感受以形证数的思想内涵。教师乙的教学方式虽然不能在开篇使学生直接把握课程目的,但是十分贴切三维教学目标,使学生对于勾股定理有深刻的理解,加深学生对于勾股定理知识内容的记忆。但教师乙的教学过程也存存一些不足:没有使学生充分了解勾股定理在实际解题中的运用
解析
转载请注明原文地址:https://www.kaotiyun.com/show/S4tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
思想品德课最基本和最常用的教学方法是()。
《义务教育思想品德课程标准(2011年版)》对教师的教学提出了一些建议,下列属于教学建议的有()。①创造性使用教材,优化教学过程②注重学生的情感体验和道德实践③采用知识性考试作为评价的唯一方式④强调与生活实际及其
霍金说:“随着量子力学的发现,我们认识到,由于总存在一定程度的不确定性,不可能去完全精确地预言事件”“我们的目的只在于套定律,这些定律能使我们在不确定性原理的极限内预言事件。”对此,正确的理解是()。
《普通高中思想政治课程标准(2017年版)》的实施,要求思想政治课同绕议题,设计活动型学科课程教学。议题举足轻重,议题教学,是基于我国思想政治课程教育教学的广泛实践和积极应对现实政治课教学问题的一项理论创新,是对传统教学方式的创新与发展,教师根据教学实际与
四合院作为传统建筑的代表,一般正房高于侧房,面积也比侧房大。住房的安排,一般是家长住正房,晚辈住厢房或者耳房;一家老少,从上到下,什么辈分的人住什么样的房,一切都按规矩来。四合院的房屋布局合乎中国封建社会的人伦礼节,这反映了()。
已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,则()。
设三次多项式函数f(x)=ax3+bx2+cx+d满足f(t)dt=12x2+18x+1,则f(x)的极大值点为()。
曲线y=和直线y=x及y=2所围成的图形的面积为()。
已知A、B、C是椭圆形:上的三个点,O是坐标原点。(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由。
随机试题
芫花,甘遂,大戟泻水逐饮药力从强到弱顺序为
A.涩肠止泻,温中行气B.益肾固精,健脾止泻,除湿止带C.益肾固精,补脾止泻,止带,养心D.固精止带,收敛止血,制酸止痛,收湿敛疮E.敛肺降火,涩肠止泻,固精止遗,敛汗止血
Perthes试验的目的是确定【】
母乳喂养是指
若在组距式数列中,每个组中值减少10,各组的次数不变时,其算术平均数()。
张某超越王某授予的代理价格权限,以王某的名义与知情的赵某订立了买卖私房的合同。对此,下列说法正确的有()。
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
A、 B、 C、 D、 E、 C
以下能够正常结束循环操作的程序段是
Itseemsthatfudgeis
最新回复
(
0
)