首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
admin
2016-10-20
87
问题
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响并设α=0.05).
选项
答案
先确定X的分布参数λ,由于P{X=8}=2.5P{X=10},即 [*] 计算出Y服从参数为λα的泊松分布,即 [*] 一个月内无重大交通事故的概率p=P{Y=0}=e
-0.3
. 一年内最多有一个月发生重大交通事故就是一年内至少有11个月无重大交通事故,其概率为 P{Z=11}+P{Z=12}=[*](1-e
-0.3
)+e
-3.6
=0.142.
解析
此题首先应该计算一个月内该地段发生重大交通事故次数Y的概率分布,据此可求出概率p=P{Y=0}.如果用Z表示一年内无重大交通事故的月份数,显然各个月是否有重大交通事故互不影响,因此Z服从二项分布B(12,p).
转载请注明原文地址:https://www.kaotiyun.com/show/S0T4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
设A是n×m矩阵,B是m×n矩阵,其中n
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
某城有N辆车,车牌号从1到N,某观察员在某地把所遇到的n辆车的牌号抄下(可能重复抄到车牌号),问为抄到最大号码正好k的概率(1≤k≤N)是多少?
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
随机试题
设由y轴、y=x2(x≥0)及y=a(0<a<1)所围成的平面图形及由y=a,y=x2及x=1所围成的平面图形都绕x轴旋转,所得旋转体的体积相等,求n.
小儿惊厥持续状态是指
在水环境现状调查中,测得其pH=10,则pH的标准指数为()。
下列使用二维稳态混合模式的情况有()。
下列关于施工成本分析的依据的说法中,正确的是()
盘盈的固定资产一般应作为( )处理。
华生公司开发了有助于失明患者进行义眼移植的Y产品,并且取得了发明专利。华生公司随后建立了生产Y产品的工厂,目前形成了较为完善的进货、生产、发货、服务与分销体系。从企业价值链角度考察,华生公司与Y产品有关的价值活动包括()。
Tt9Aa8Jj
设求f’(x).
(1999年)设f(x)是连续函数,F(x)是f(x)的原函数,则()
最新回复
(
0
)