首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)已知f(x)是周期为5的连续函数.它在x=0某个邻域内满足关系式 f(1+sinx)一3f(1一sinx)=8x+α(x) 其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线
(00年)已知f(x)是周期为5的连续函数.它在x=0某个邻域内满足关系式 f(1+sinx)一3f(1一sinx)=8x+α(x) 其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线
admin
2018-07-27
153
问题
(00年)已知f(x)是周期为5的连续函数.它在x=0某个邻域内满足关系式
f(1+sinx)一3f(1一sinx)=8x+α(x)
其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
选项
答案
[*] 所以 f’(1)=2 由于f(x+5)=f(x),所以f(6)=f(1)=0.f’(6)=f’(1)=2 故所求切线方程为y=2(x一6) 即 2x-y一12=0
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Rbj4777K
0
考研数学二
相关试题推荐
(-1,1)或-1<x≤1
设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且秩(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续;(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续;(Ⅲ)f(x,y)在点(xo,yo)处可微;(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在;
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3,求P-1AP.
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a2-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设奇函数f(x)在闭区间[-1,1]上具有2阶导数,且f(1)=1.证明(1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(-1,1),使得f"(η)+f’(η)=1.
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
随机试题
下列不属于《外贸法》修订的主要内容的是
在X线摄影中的光化学反应是
A.氢质子密度B.横向弛豫C.纵向弛豫D.合磁矢量E.静磁矢量T1WI主要反映组织的___________物理指标
对口蹄疫病毒敏感的是()。
A.实验对照B.空白对照C.安慰剂对照D.标准对照E.历史对照某医师研究乙酰半胱氨酸的祛痰效果,实验组用乙酰半胱氨酸,对照组用“疗效公认”的溴己新,这种对照称为
下列关于无固定期限劳动合同说法错误的是:()。
当事人对下列哪些事项既可以申请行政复议也可以提起行政诉讼?(2013年卷二第83题)
常用无机绝热材料有()。
用于对某一项行政工作作比较具体规定的规范性文件,称作()。
——能够打破课堂和教科书的束缚,使教学与实际生活、生产密切地联系起来,扩大学生的视野,在接触社会中受到教育。
最新回复
(
0
)