首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2012年] 设 当实数a为何值时,方程组AX=β有无穷多解,并求其通解.
[2012年] 设 当实数a为何值时,方程组AX=β有无穷多解,并求其通解.
admin
2019-05-10
56
问题
[2012年] 设
当实数a为何值时,方程组AX=β有无穷多解,并求其通解.
选项
答案
分析参数a取何值时秩(A)=秩([A :β])<4,从而AX=β有无穷多解,进一步写出其通解. 为使秩(A)<4,必有∣A∣
2
0,因而a=1或a=一1.当a=1时,用初等行变换易化为 [*] 因秩(A)=3而秩([*])=秩([A:β])=4,故AX=β当a=1时无解. 当a=一1时,用初等行变换易化为含最高阶单位矩阵的阶梯形矩阵: [*] 因秩(A)一秩([A:β])=3<4,故该方程组当a=1时有无穷多解.由基础解系和特解的简便求法得到其对应的齐次方程组的一个基础解系只含一个解向量α=[1,1,1,1]
T
,原方程组的一个特解η=[0,一1,0,0]
T
,故原方程组的通解为 X=kα+η=k[1,1,1,1]
T
+[0,一1,0,0]
T
, k为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RVV4777K
0
考研数学二
相关试题推荐
设y=y(χ)是一向上凸的连续曲线,其上任意一点(χ,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=χ+1,求该曲线方程,并求函数y(χ)的极值.
设函数f(χ)满足χf′(χ)-2f(χ)=-χ,且由曲线y=f(χ),χ=1及χ轴(χ≥0)所围成的平面图形为D.若D绕χ轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(χ);(2)曲线在原点处的切线与曲线及直线χ=1所围成的平面
若f(χ)在χ=0的某邻域内二阶连续可导,且=1,则下列正确的是().
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
求函数f(χ,y)=4χ-4y-χ2-y2在区域D:χ2+y2≤18上最大值和最小值.
计算(4-χ2-y2)dχdy,其中D为由圆χ2+y2=2y所围成的平面闭区域.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
物体由曲面.坐标面y=0及z=0围成,其密度为μ(x,y,z)=ycos(x+z),求物体的质量m.
[2017年]求
[2017年]已知平面区域D={(x,y)∣x2+y2≤2y),计算二重积分(x+1)2dxdy.
随机试题
患儿,男,6岁,面部及双下水肿1周收入院。查体:精神尚可,眼睑及颜面部水肿,心、肺、腹无异常,阴囊中度水肿,下肢可凹性水肿。实验室检查:尿蛋白(++++),血浆总蛋白及白蛋白明显减少,血胆固醇明显升高,补体C3正常该患儿当前的饮食中蛋白质的供给量宜为
可能患有胃癌的胃液是
可使泪液、痰液、尿液、唾液呈橘红色的抗结核药物是
A.丙氨酸氨基转移酶(ALT)B.碱性磷酸酶(ALP)C.天门冬氨酸氨基转移酶(AST)D.γ一谷氨酰转移酶(γ一GT)E.淀粉酶(AMS)急性心肌梗死时明显增高的酶是
企业实现的净利润要按一定的程序进行分配,利润分配的内容有()。
下列关于会计的说法正确的是()。
历史上,用“八荒争凑,万国咸通”来形容的我省古都是()。
DebbiegotupearlylastSaturdaymorning.Shewanted【C1】______inGreenParkwithsomeofherfriends.Shewasvery【C2】______abo
TheChildrenRestaurantisverysmallbecause______.ThecostofaMealis______.
A、Hewasabsentfromtheclass.B、Thesubjectisdifficulttopass.C、Hedidn’tworkhardinthesubject.D、Theprofessorgives
最新回复
(
0
)