首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 (Ⅰ)证明矩阵A能相似于对角矩阵; (Ⅱ)若α=(0,﹣1,1)T,β=(1,0,﹣1)T,求矩阵A。
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 (Ⅰ)证明矩阵A能相似于对角矩阵; (Ⅱ)若α=(0,﹣1,1)T,β=(1,0,﹣1)T,求矩阵A。
admin
2019-12-06
87
问题
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。
(Ⅰ)证明矩阵A能相似于对角矩阵;
(Ⅱ)若α=(0,﹣1,1)
T
,β=(1,0,﹣1)
T
,求矩阵A。
选项
答案
(Ⅰ)因为A的各行元素和为零,从而λ=0为A的一个特征值,并且γ=(1,1,1)
T
为A属于λ=0的特征向量。 另一方面,又因为Aα=3β,Aβ=3α,所以 A(α+β)=3(α+β),A(α-β)=﹣3(α-β), λ=3和λ=﹣3为A的两个特征值,并且α+β和α-β为A属于λ=3,﹣3的特征向量,可见A有三个不同的特征值,所以A能相似于对角矩阵。 (Ⅱ)A的三个特征向量为 γ=(1,1,1)
T
,α+β=(1,﹣1,0)
T
,α-β=(﹣1,﹣1,2)
T
, 令P=(γ,α+β,α-β),[*], 则P
﹣1
AP=[*],所以 A=P[*]P
﹣1
=[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RUA4777K
0
考研数学二
相关试题推荐
设λ=2是可逆矩阵A的一个特征值,则(A2)-1+E的一个特征值是
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
函数f(χ)=|χsinχ|ecosχ,-∞<χ<+∞是().
设A,B均为n阶可逆矩阵,则下列等式中必定成立的是()
设A为三阶矩阵,方程组Ax=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是_______.
设f(x,y)在区域D:x2y2≤t2上连续且f(0,0)=4,则=______.
设函数y=f(x)在区间[0,1]上非负、存在二阶导数,且f(0)=0,有一块质量均匀的平板D,其占据的区域是曲线y=f(x)与直线x=1以及x轴围成的平面图形.用表示平板D的质心的横坐标.求证:若f’’(x)>0(0≤x≤1),则(如图1-10-4
设函数y=f(x)在区间[0,1]上非负、存在二阶导数,且f(0)=0,有一块质量均匀的平板D,其占据的区域是曲线y=f(x)与直线x=1以及x轴围成的平面图形.用表示平板D的质心的横坐标.求证:若f’(x)>0(0≤x≤1),则(如图1-10-4)
随机试题
课程内容的组织包括:()式与()式;()组织与()组织;()顺序与()顺序。
()提出教育目标分类学,将教学目标划分为()个领域,分别为:()领域;()领域;()领域。
列表说明强迫观念和强制性思维的区别要点。
A.肠结核B.大肠癌C.克罗恩病D.溃疡性结肠炎病变好发于直肠,国内占半数以上
治疗汞中毒的解毒药治疗阿片中毒的解毒药
主动脉瓣狭窄的肺血改变是二尖瓣狭窄的肺血改变是
基金管理过程中发生的费用,主要包括()。
81,-8,l,0,1,()
(2013年真题)下列不属于大陆法系别称的是
下列不是报表的视图方式的是()。
最新回复
(
0
)