首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤1/2|f(x)|.证明:f(x)=0,x∈[0,1].
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤1/2|f(x)|.证明:f(x)=0,x∈[0,1].
admin
2022-10-09
37
问题
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤1/2|f(x)|.证明:f(x)=0,x∈[0,1].
选项
答案
因为f(x)在[0,1]上可导,所以f(x)在[0,1]上连续,从而|f(x)|在[0,1]上连续,故|f(x)|在[0,1]上取到最大值M,即存在x
0
∈[0,1],使得|f(x
0
)|=M.当x
0
=0时,则M=0,所以f(x)=0,x∈[0,1];当x
0
≠0时,M=|f(x
0
)|=|f(x
0
)-f(0)|=|f’(ξ)|x
0
≤|f’(ξ)|≤1/2|f(ξ)|≤M/2,其中ξ∈(0,x
0
),故M=0,于是f(x)=0,x∈[0,1].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RKR4777K
0
考研数学三
相关试题推荐
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为求矩阵A;
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵且AB=O,求线性方程组Ax=0的通解.
设f(x)在x=0处连续,且x≠0时f(x)=.求曲线y=f(x)在x=0对应的点处的切线方程.
设f(x)在x>0上有定义,对任意的正实数x,y,f(xy)=xf(y)+yf(x).f’(1)=2,试求f(x).
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题:①AAT的行列式|AAT|≠0;②AAT必与n阶单位矩阵等价;③AAT必与一个对角矩阵相似;④AAT必与n阶单位矩阵合同,其中正确的命题数为
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
下列命题正确的是().
已知生产某产品的固定成本为a(a>0),生产x个单位的边际成本与平均成本之差为(x/a)-(a/x),且当产量为a时,相应的总成本为2a,求总成本C与产量x的函数关系式。
随机试题
在再灌注时细胞内钙超载发生的直接机制是
患者,男,36岁。面、手部皮疹1年,1年前冬季开始出现皮疹,皮疹轻度痒,日晒后加重,不伴有其他症状。体格检查:一般情况尚可,系统检查无异常。颧、鼻、外耳、手背部见暗红色斑块,表面覆黏着性鳞屑,皮损中央萎缩,毛细血管扩张,境界清楚,下唇有类似病损。实验室检查
患者,男,52岁。左侧动眼神经麻痹,临床考虑颅内动脉瘤,行旋转DSA检查。应采取的触发技术是
侧支根管的形成是因为
唾液缓冲能力中起主要作用的是
测得利多卡因的消除速度常数为0.3465h-1,则它的生物半衰期为()。
证券投资者可以分为机构投资者和个人投资者两大类。()
询价计划编制的主要内容包括________。
层次分明,对培训效果的评估由易到难,循序渐进是()的特点。
假定对高中一年级至三年级的男生进行身体素质的测试。确定可能对测试成绩的差异产生影响的变量或因素。
最新回复
(
0
)