首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
四维向量组α1=[1+a,1,1,1],α2=[2,2+a,2,2],α3=[3,3+a,3,3],αa=[4,4,4,4+a].问a为什么数时,α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求其一个极大线性无关组,并且把其余向量用该极
四维向量组α1=[1+a,1,1,1],α2=[2,2+a,2,2],α3=[3,3+a,3,3],αa=[4,4,4,4+a].问a为什么数时,α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求其一个极大线性无关组,并且把其余向量用该极
admin
2019-04-08
83
问题
四维向量组α
1
=[1+a,1,1,1],α
2
=[2,2+a,2,2],α
3
=[3,3+a,3,3],α
a
=[4,4,4,4+a].问a为什么数时,α
1
,α
2
,α
3
,α
4
线性相关?在α
1
,α
2
,α
3
,α
4
线性相关时求其一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
选项
答案
α
1
,α
2
,α
3
,α
4
线性相关,即行列式|α
1
,α
2
,α
3
,α
4
|=0,而|α
1
,α
2
,α
3
,α
4
|=a
3
(a+10),于是当a=0或a=-10时,α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
是α
1
,α
2
,α
3
,α
4
的极大无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=一10时,用初等行变换求其极大无关组.因 [α
1
T
,α
2
T
,α
3
T
,α
4
T
] [*] 显然β
1
,β
2
,β
3
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
4
=一β
1
一β
2
—β
3
.由于矩阵的初等行变换不改变矩阵列向量组之间的线性关系,故α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大无关组,且α
4
=一α
1
一α
2
一α
3
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RJ04777K
0
考研数学一
相关试题推荐
(2000年)设其中f具有二阶连续偏导数,g具有二阶连续导数,求
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=________。
设A,B为随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X和Y的相关系数ρXY。
计算曲面积分(0≤z≤1)第一卦限的部分,方向取下侧.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
(2003年)设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则f(x)有
(2018年)将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
[2002年]已知函数y=y(x)由方程ey+6xy+x2一1=0确定,则y’’(0)=______.
随机试题
-2因为|A*|=|A|2=4,且|A|>0,所以|A|=2,又AA*=|A|E=2E,所以A-1=1/2A*,从而A-1的特征值为-1/2,-1,1,根据逆矩阵之间特征值的倒数关系,得A的特征值为-2,-1,1,于是a11+a22+a33=-2-1+1=
可与重氮苯磺酸反应生成红色偶氮染料的药物是
任何一项工程都有其特定的用途、功能和规模,因而使工程的内容和实物形态都具有( )。
东南机电安装工程公司中标某商业大厦的全部机电安装工程。合同规定,工程量清单计价采用综合单价计价。该公司项目部计算该工程相关费用为:分部分项工程工程量清单计价2200万元,措施项目清单计价70.5万元,其他项目清单计价120万元,规费90万元,税金80.5万
对玻璃幕墙工程进行质量检验时,应划分检验批进行抽查,每抽查一处的面积最少为( )。
下列选项中,关于合伙企业的表述,错误的是()。
国债负担率一般认为不宜超过()。
属于提供设备和其他有形资产的特许权费以及提供初始及后续服务的特许权费,均在交付资产或转移资产所有权时确认收入。()
下列关于国有独资公司组织机构的表述中,符合公司法律制度规定的是()。
企业收到的投资者超出其在企业注册资本中所占份额的投资,应直接计入当期损益。()
最新回复
(
0
)