首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
admin
2017-06-14
62
问题
设A
m×n
,r(A)=m,B
n×(n-m)
,r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
选项
答案
将B按列分块,设B=[β
1
,β
2
,…,β
n-m
],因已知AB=0,故知B的每-列均是AX=0的解,由r(A)=m,r(B)=n-m,β
1
,β
2
,…,β
n-m
是AX=0的基础解系. 若η是AX=0的解向量,则η可由基础解系β
1
,β
2
,…,β
n-m
线性表示,且表示法唯一,即 η=x
1
β
1
+x
2
β
2
+…+x
n-m
β
n-m
, 即存在唯一的ξ,使Bξ=η.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Qpu4777K
0
考研数学一
相关试题推荐
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
血清总胆红素、结合胆红素、非结合胆红素均中度增加,可见于
以下有关“缺药的处理”的叙述中,不恰当的是
案情:某市发展中心甲与该市物资有限公司乙签订《房地产买卖契约》,将位于该市丙区的房屋转让于甲。该市中级人民法院在执行乙公司与该市合作银行的民事判决时,向丙区房屋登记办公室下达了“停止办理乙公司的房屋产权转移手续”的协助执行通知书。期间,甲向该市房管局提出核
法兰克帝国分裂后,原帝国一分为三,其中法兰西王国的法律制度在何种法的基础上,进入了封建制法律制度时期?()
某企业负责人在2006年财务会计报告编制过程中,对会计主管人员提出“许盈不许亏”的要求。该企业会计人员采用变更存货的计价方法,冲减资产减值准备的手段,使企业财务报表做到稍有盈余。在注册会计师进驻审计时,该企业会计人员在负责人的指使下提出“如通不过审计就变换
分离交易的可转换公司债券募集说明书应当约定,上市公司改变公告的募集资金用途的,应赋予债券持有人( )次回售的权利。
经风险调整的资本收益率(RAROC)的计算公式是()。
运动员;兴奋剂
对很多作家来说,最________的文字,几乎都是源自早年的乡土经验。因为一进入旧时的场景,就温暖,就自在,就身心通泰,________,有如神助。相反,那些凭空想象的创作,虽然________,用尽心力,还是拘涩凝滞,不能自由伸展。依次填入画横线部分最恰
Dismissinganincompetentstaffcanbeanythingbut
最新回复
(
0
)