首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
admin
2019-08-12
90
问题
已知β可用α
1
,α
2
,α
3
线性表示,但不可用α
1
,α
2
,α
3
线性表示.证明
(1)α
a
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
选项
答案
r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
),r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
)+1 于是有 r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s-1
,β)≥r(α
1
,α
2
,…,α
s-1
,β) =r(α
1
,α
2
,…,α
s-1
)+1≥r(α
1
,α
2
,…,α
s
) 从而其中两个“≥”号都为等号.于是 r(α
1
,α
2
,…,α
s-1
)+1=r(α
1
,α
2
,…,α
s
) 因此,α
s
不可用α
1
,α
2
,…,α
s-1
线性表示. r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
,β), 因此,α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QcN4777K
0
考研数学二
相关试题推荐
(2012年)设函数f(x,y)可微.且对任意x,y都有,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
设4阶方阵A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=_______.
设有线性方程组(1)证明:当a1,a2,a3,a4两两不等时,此方程组无解;(2)设a1=a3=k,a=a=-k(k≠0)时,方程组有解β1=(-1,1,1)T,β2=(1,1,-1)T,写出此方程组的通解.
设函数y=y(x)由参数方程确定,其中x(t)是初值问题
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
已知方程组及方程组(Ⅱ)的通解为k1[一1,1,1,0]T+k2[2,一1,0,1]T+[一2,一3,0,0]T,k1,k2为任意常数.求方程组(I),(Ⅱ)的公共解.
已知数列{xn}的通项n=1,2,….证明
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是______。
设数列{xn}与{yn}满足则下列结论正确的是()
随机试题
利润表是反映企业月末、季末或年末取得的利润和发生的亏损情况的报表。
霍奇金病病变中最具有诊断价值的细胞是
患者女性,43岁,发现蛋白尿11年,近半年来乏力、恶心、皮肤瘙痒、夜尿增多。查体:重度贫血貌,双下肢浮肿,血压160/100mmHg,血红蛋白40g/L,SCrl209μmol/L,血钾6.5mmol/L。血钙2.0mmol/L,血磷3.6mmol/L。
关于施工现场宿舍管理,下列说法中正确的有()。
统计分析报告属于()。
发挥蓄水池作用是指金融市场的()功能。
审计过程中,审计人员应围绕()收集证据,对管理层的认定进行验证。
渗透在生产、生活过程中的口授身传生产、生活经验的现象,称之为()。
某企业税后净利润为70万元,所得税税率为30%,利息费用为20万元,则利息周转倍数为()。
A、Theyrealizedsomecompaniesexploitedthemovement.B、Theydidn’tknowwhattodo.C、Theydidn’trealizesomecompaniesmade
最新回复
(
0
)