首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
admin
2019-08-12
88
问题
已知β可用α
1
,α
2
,α
3
线性表示,但不可用α
1
,α
2
,α
3
线性表示.证明
(1)α
a
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
选项
答案
r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
),r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
)+1 于是有 r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s-1
,β)≥r(α
1
,α
2
,…,α
s-1
,β) =r(α
1
,α
2
,…,α
s-1
)+1≥r(α
1
,α
2
,…,α
s
) 从而其中两个“≥”号都为等号.于是 r(α
1
,α
2
,…,α
s-1
)+1=r(α
1
,α
2
,…,α
s
) 因此,α
s
不可用α
1
,α
2
,…,α
s-1
线性表示. r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
,β), 因此,α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QcN4777K
0
考研数学二
相关试题推荐
(2007年)设矩阵A=,则A3的秩为________.
(18)设实二次型f(x1,x2,x3)=(x1-x3+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.(1)求f(x1,x2,x3)=0的解;(2)求f(x1,x2,x3)的规范形.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形.并写出所用的正交变换和对应的正交矩阵
设矩阵A=相似.(1)求a,b的值;(2)求一个可逆矩阵P,使P-1AP=B.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续;
求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图3.34).
用数列极限的定义证明下列极限:
求数列极限ω=.
设f(x1,x2,…,xn)=XTAX是正定二次型.证明:举例说明上述条件均不是f(x1,x2,…,xn)正定的充分条件.
已知曲线L的方程(t≥0)。求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
随机试题
治疗疱疹性口炎的常用药物是
急性腹膜炎患者自己不能调整或变换肢体的位置,见于极度衰弱或意识丧失的病人
发生不可抗力使合同不能履行或不能完成履行时,应依法()。
银行使用久期缺口测量其资产和负债的利率风险。()
读“中国地势阶梯状分布图”(图3),回答下列问题。 这种地势分布特点,对我国的气候、河流以及东西部之间的交通往来有哪些影响?
在UNIX系统中,用户程序经过编译之后得到的可执行文件属于()。
Mostofuswouldliketobeboth(1)_____andcreative.WhywasThomasEdisonabletoinventsomanythings?Washesimplymore
阅读下列代码publicclassTest{publicstaticvoidmain(Stringargs[]){System.out.println(5/2);}}其执行结果是【】。
Alotofpeopledon’twanttotalkabouttheirage,especially(尤其是)womenover30.Thethoughtofgrowingolderisapainful(痛苦的
Trivialbreachesofregulationswecanpassover,butmoreseriousoneswillhavetobeinvestigated.
最新回复
(
0
)