首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设α1,α2是齐次线性方程组Ax=0的一个基础解系,证明β1=α1+2α2,β2=α1+α2也是方程组Ax=0的一个基础解系.
设α1,α2是齐次线性方程组Ax=0的一个基础解系,证明β1=α1+2α2,β2=α1+α2也是方程组Ax=0的一个基础解系.
admin
2018-08-22
47
问题
设α
1
,α
2
是齐次线性方程组Ax=0的一个基础解系,证明β
1
=α
1
+2α
2
,β
2
=α
1
+α
2
也是方程组Ax=0的一个基础解系.
选项
答案
由Aα
1
=0,Aα
2
=0,得 Aβ
1
=A(α
1
+2α
2
)=0,Aβ
2
=A(2α
1
+α
2
)=0, 可知β
1
,β
2
也是方程组Ax=0的解. 设有常数k
1
,k
2
使得k
1
β
1
+k
2
β
2
=0,即 k
1
(α
1
+2α
2
)+k
2
(2α
1
+α
2
)=0, 整理为(k
1
+2k
2
)α
1
+(2k
1
+k
2
)α
2
=0. 由于α
1
,α
2
线性无关,得到[*],推出k
1
=k
2
=0, 因此β
1
,β
2
线性无关。 由于α
1
,α
2
是Ax=0的基础解系,故该方程组的任意两个线性无关的解都是它的基础解系.从而β
1
,β
2
也是Ax=0的基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QayR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
阅读《麦琪的礼物》中的一段文字:我的拙笔在这里向读者叙述了一个没有曲折、不足为奇的故事:那两个住在一间公寓里的笨孩子,极不聪明地为了对方牺牲了他们家里最宝贵的东西。但是。让我对目前一般聪明人说一句最后的话,在所有馈赠礼物的人当中,他们两个是最聪
举例说明这段文字中使用的修辞手法。作者用种树之道来说明“官理”,这是怎样的表现方法?
这里倡导什么样的社会理念?文中主要运用了哪种论证方法?
下列《秋水》中的论据,通过对比法来证明人的认识有限的有
放眼远望,我惊叹不已,木柴堆上到处都有这样奋力厮杀的勇士,看来不是单挑决斗,而是一场战争,两个蚂蚁王国的大决战。红蚂蚁与黑蚂蚁势不两立,通常是两红对一黑。木柴堆上都是这些能征善战的弥尔弥冬军团。地上躺满已死和将死者,红黑混杂一片。概括这段描写的大意。
如果你一听到一种与你相左的意见就发怒,这就表明,你已经下意识地感觉到你那种看法没有充分理由。如果某个人硬要说二加二等于五,或者说冰岛位于赤道,你就只会感到怜悯而不是愤怒,除非你自己对数学和地理也是这样无知,因而他的看法竟然动摇了你的相反的见解。这段话的
下列《论毅力》中的论据,通过类比法证明总论点的有
在《吃饭》一文中,“人类所有的创造和活动(包括写文章在内),不仅表示头脑的充实,并且证明肠胃的空虚”这句话的意思是
已知矩阵则对应的二次型f(x1,x2,x3)=__________.
用初等变换法将下列二次型化为标准型并求正、负惯性指数:f(x1,x2,x3)=x12+2x22+2x1x2+2x2x3+4x32.
随机试题
为了提高经过表面淬火的机体导轨面的精度,采用手工刮削较方便。( )
以下哪一项不是小肠克罗恩病的X线表现
A、苯妥英钠B、地西泮C、苯巴比妥D、丙戊酸钠E、卡马西平对癫癎部分性发作有良效
大体积混凝土的浇筑方案有()。
()地处安徽省中西部,跨长江、淮河两大流域,是淠河、史河、杭埠河三个毗邻灌区的总称。
省旅游局的两个旅游团来我市参观。你会如何沟通协调?
概念结构设计的主要成果是______。
域模式最大的好处是具有【 】登录功能,用户只要在域中有一个账户,就可以在整个网络中漫游。
Whattimeisitnow?
It’sanindustrybuiltpurely【C1】______image,buttheactors,actressesandsingerswhoturntoitforhelpliketokeepita
最新回复
(
0
)