首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ=0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ=0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2018-08-22
69
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ=0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, 等式两端左边乘A,得[*]则k
1
α
1
+…+k
1
,α
t
=0. 由α
1
,α
2
,…,α
t
线性无关,得[*]所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QWj4777K
0
考研数学二
相关试题推荐
求定积分的值
[*]其中C为任意常数
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设f(x)具有二阶导数,且f"(x)>0.又设u(t)在区间[0,a](或[a,0])上连续,试证明:
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f(f(x))至少在两点处取得最小值.
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求一个正交变换x=Py将二次型f=xTAx化成标准;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设有3阶实对称矩阵A满足A3-6A2+11A一6E=0,且|A|=6.写出用正交变换将二次型f=xT(A+E)x化成的标准形(不需求出所用的正交变换);
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
随机试题
A、Itwasstartedbyhisfather.B、Ithasabout50employees.C、Itisover100yearsold.D、Itisafamilybusiness.D
无排卵性功血的主要病理及临床表现是
女,26岁,闭经7个月,1年前曾服药减肥。下列哪项检查可确诊
二审人民法院对上诉案件审理过程中,发现本案一审审判员甲是当事人乙的父亲,而甲并未自行回避,当事人也未申请乙回避。二审法院应如何处理本案?()
有关路基设计的说法不正确的是()。
《中华人民共和国招标投标法》规定,必须进行招标的工程咨询服务有()。
根据绳的捻向,钢丝绳分为右捻绳、左捻绳。如无特别要求,规定起重机用()。
档案行政管理制度包括()。
“达”意为显贵,无论处在什么样的社会形态和社会阶段,所谓“达者”始终只占少数。如果“穷者”只顾自己的_________,只有占社会成员少数的“达者”才“兼济天下”,那么当今社会的风气不可想象。如果团结互助、志愿服务的社会风气只依靠占少数的“显达”成员来_
A.ambitiousB.appealstoC.contactsD.expectE.easilyF.worksG.consultingH.recruitI.turnstoJ.settledK.e
最新回复
(
0
)