首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
admin
2021-02-25
68
问题
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
选项
答案
令F(x)=f(x+a)-f(x).因为f(x)在[0,1]上非负连续,f(x+a)应在[-a,1-a]上非负连续,于是F(x) 在[0,1-a]上连续.且 F(0)=f(a)-f(0)=f(a)≥0, F(1-a)=f(1)-f(1-a)=-f(1-a)≤0. (1)若F(0)=0,则ξ=0即为所求; (2)若F(1-a)=0,则ξ=1-a即为所求; (3)若F(0)≠0且F(1-a)≠0,则由零点定理,必存在[*],使得F(ξ)=0,即f(ξ+a)=f(ξ). 综上所述,存在ξ∈[0,1),使f(ξ+a)=f(ξ).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QO84777K
0
考研数学二
相关试题推荐
设函数g(x)可微,h(x)=e1+g(x),h’(1)=l,g’(1)=2,则g(1)等于().
设f(t)为连续函数,且∫0χtf(2χ-t)dt=ln(1+χ2),f(1)=1,则∫12f(χ)dχ=_______.
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
求下列方程通解或满足给定初始条件的特解:1)y+1=χeχ+y.2)χ+χ+sin(χ+y)=03)y′+ytanχ=cosχ4)(1+χ)y〞+y′=05)yy〞-(y′)2=y4,y(0)=1,y′(0
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化.
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,c,d为常数)()
求解二阶微分方程的初值问题
设f(x)连续,且满足f(x)+=x2+1/2则关于f(x)的极值问题有()。
已知y=f(x)是微分方程xy’一y=满足初值条件f(1)=0的特解.则∫01f(x)dx=________.
随机试题
女,43岁,右下腹持续性疼痛5天,伴恶心、呕吐,呕出物为胃内容物。体温38.5℃。体检发现右下腹5cm×5.5cm大小肿块,触痛明显最可能的诊断是
幼儿德育的重点是培养幼儿的道德认识。
使消费者在商品买卖中处于不利地位的是
A.外周血中全血细胞减少B.骨髓象中巨核细胞缺乏C.骨髓有核细胞减低D.网织红细胞计数轻度增高E.酸化血清溶血试验阳性
微机中,CAM的涵义是()。
合同的书面形式指合同书、信件、数据电文等形式。()
供给规律说明()。
汪娟最近有一个毛病,写作业时总觉得不整洁,擦了写,写了又擦,反反复复。她明知这样做没有必要,就是控制不住。她可能出现了()。
A、Atlunchtime.B、At10a.m.C、At1:30p.m.D、At3p.m.D由原文可知,乔治.布朗将在下午2点至5点工作,所以在这个时间段女士可以在办公室找到他。因此答案为D。
A、Whattobetaughtinthehumanitiesclass.B、Howtoteachthestudentsinthescienceclass.C、Whetherpoetryisdifficultfor
最新回复
(
0
)