首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A2=A, r(A)=r,证明A能对角化,并求A的相似标准形.
设A是n阶矩阵,A2=A, r(A)=r,证明A能对角化,并求A的相似标准形.
admin
2016-10-20
93
问题
设A是n阶矩阵,A
2
=A, r(A)=r,证明A能对角化,并求A的相似标准形.
选项
答案
对A按列分块,记A=(α
1
,α
2
,…,α
n
).由r(A)=r,知A中有r个列向量线性无关,不妨设为α
1
,α
2
,…,α
n
,因为A
2
=A,即 A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
),所以 Aα
1
=α
1
=1.α
`
, …, Aα
r
=α
2r
=1.α
r
. 那么λ=1是A的特征值,α
1
,α
2
,…,α
r
是其线性无关的特征向量. 对于齐次线性方程组Ax=0,其基础解系由n-r(A)=n-r个向量组成.因此,0是A的特征值,基础解系是λ=0的特征向量.从而A有n个线性无关的特征向量,A可以对角化(λ=1是r重根,λ=0是,n-r重根),且有 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QMT4777K
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设A是n×m矩阵,B是m×n矩阵,其中n
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
判断下述命题的真假,并说明理由:
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
A是n阶矩阵,且A3=0,则().
随机试题
在人力资源管理工作中,绩效评估的作用体现在哪些方面?
患者,男性,38岁。因颅脑损伤致昏迷,需鼻饲,护士在晨晚期间为其进行口腔护理的目的不包括
下列哪些行政行为不属于行政处罚?(2016年卷二81题)
C公司为一般纳税人,购销业务适用的增值税税率为17%,只生产一种产品。2015年相关预算资料如下:资料一:预计每个季度实现的销售收入(含增值税)均以赊销方式售出,其中60%在本季度内收到现金,其余40%要到下一季度收讫,假定不考虑坏账因素。部分与销售预算
交警刘某在某区设点检查时,发现一辆私家车辆途经此地并停车下客。经向乘车人员倪某、陆某询问,轿车司机张某和倪某、陆某谈妥了目的地、车费15元后同意两人搭乘,检查时,尚未收取车费。调查期间,刘某多次打断张某的申辩,对其说:“你就不要狡辩了,现在证据确凿。”后刘
文化认同作为小到一个群体、大到一个民族向心力的有机“粘合剂”,是凝聚这个群体和民族伟大精神力量的_________。文化认同如果缺失,社会语境便趋于焦虑,人们的价值取向便会_________,因为文化认同相对于政治认同和社会认同,具有更深远的_______
一般来讲,一份问卷的作答时间以()分钟为宜。
设f(0)=0,则f(x)在点x=0可导的充要条件为
"Inthelongrun,"asJohnMaynardKeynesobserved,"wearealldead."True.Butcanthe【1】runbeelongatedinawaythatmakes
Politiciansandthepublicarequicktoblamecollegefacultymembersforthedeclineinlearning,butprofessors—likealltea
最新回复
(
0
)