首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内连续,且满足,则x=0
设函数f(x)在x=0的某邻域内连续,且满足,则x=0
admin
2016-10-20
78
问题
设函数f(x)在x=0的某邻域内连续,且满足
,则x=0
选项
A、是f(x)的驻点,且为极大值点.
B、是f(x)的驻点,且为极小值点.
C、是f(x)的驻点,但不是极值点.
D、不是f(x)的驻点.
答案
C
解析
本题应先从x=0是否为驻点入手,即求f’(0)是否为0;若是,再判断是否为极值点.
由
可知x=0是f(x)的驻点.再由极限的局部保号性还知,在x=0的某去心邻域内
;由于1-cosx>0,故在此邻域内,当x<0时f(x)>0=f(0),而当x>0时f(x)<0=f(0),可见x=0不是极值点,故选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/Q4T4777K
0
考研数学三
相关试题推荐
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
证明下列导数公式:(1)(cotx)ˊ=-csc2x;(2)(cscx)ˊ=-cotx·cscx;
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
随机试题
上肢自由骨的连结包括肩关节、肘关节、桡尺连结、手关节。()
小脑上动脉综合征
下列属于真核生物基因组结构中的中度重复序列的有
患者,男,59岁。咳喘20余年,现咳嗽痰少,口燥咽干,形体消瘦,腰膝酸软,颧红盗汗,舌红少苔,脉细数。其病机是
根据我国《城市房地产管理法》的规定,下列关于城市房地产交易的表述中正确的是()。
首次公开发行股票时,如发行人发行过内部职工股,招股说明书应披露内部职工股的( )。
能为几代入所激赏的文学名著,给影视剧改编者留下的再创造的天地就变得________得多。对于已经定型、成熟的著名剧作,试图用当代入的意志、观念和情趣去作出“新的解释”,便是超越了“再创造”的界限,________,是不宜提倡的。填入画横线部分是最恰当的一项
1956年苏共二十大以后,毛泽东提出要“以苏为鉴”,探索自己的建设道路。这句话表明中国共产党()
Whowillspeakatthemeeting?
WhichofthefollowingsentencesisaCOMPLAINT?
最新回复
(
0
)