首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
admin
2018-07-26
59
问题
设A是n阶矩阵,A的第i行、第j列的元素a
ij
=i·j.
求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
选项
答案
因A
2
=(aa
T
)(aa
T
)=a(a
T
a)a
T
=(a
T
a)A=[*],故知A的特征值为0,[*]. 当λ=0时,对应的特征向量满足Ax=aa
T
x=0,因a
T
a=[*]≠0,在方程aa
T
x=0两端左边乘a
T
得 a
T
(aa
T
x)=(a
T
a)a
T
x=0,得a
T
x=0. 当a
T
x=0时,两边左边乘a,得aa
T
x=0,故方程组aa
T
x=0与a
T
x=0同解.解方程a
T
x=0,得线性无关的特征向量为 ξ
1
=(一2,1,0,…,0)
T
,ξ
2
=(一3,0,1,0,…,0)
T
,…,ξ
n-1
,=(一n,0,…,0,1)
T
, 因此对应于λ=0的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
,为不全为零的任意常数. 又tr(A)=[*]≠0,故A有一个非零特征值λ
n
=[*] 当λ
n
=[*]=a
T
a时,由λ
n
E—A)x=(a
T
aE一aa
T
)x=0,当x=a时,有 (a
T
aE—aa
T
)a=(a
T
a)a一(aa
T
)a=(a
T
a)a一a(a
T
a)=0, 故ξ
n
=k
n
(1,2,…,n)
T
(k
n
≠0)是对应于λ
n
=[*]的特征向量, 即A有n个线性无关的特征向量,A能相似于对角阵.下同法一.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Pyg4777K
0
考研数学一
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
设f(x)=处处可导,确定常数a,b,并求f’(x).
设f(x)二阶连续可导,且f(0)=f’(0)=0,f"(0)≠0,设u(x)为曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距,求.
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
若(X,Y)服从二维正态分布,则①X,Y一定相互独立;②若ρXY=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任一线性组合服从一维正态分布.上述几种说法中正确的是().
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
已知二次型xTAx是正定二次型,x=Cy是坐标变换,证明二次型yTBy是正定二次型,其中B=CTAC.
设f(x)可导,函数y=f(x2)的自变量x在x=一1处取得增量△x=一0.1时相应的函数增量△y的线性主部为0.1,则f’(1)等于().
随机试题
提出艺术的最终根源在于“理念”的是德国古典哲学家()。[福建2019]
资本主义国家产生的一般途径是______。
帕金森病的最常见症状是
工程合同协议书中指明的合同文件,一般包括()。
阅读材料,回答问题。某天早晨,中班幼儿小晶最后一个上了校车,坐在后排。值班跟车的张老师见孩子们都到齐了,因早起犯困,便打起了盹儿。由于路途遥远,小晶和同座的伙伴玩起了徒手游戏,玩到兴奋时便站了起来。忽然校车发生较大晃动,小晶摔倒,导致左手臂骨折。经查,校
下列各项中,属于心理发展的一般规律的是()。
下列哪些行为人具有刑事责任能力?()
(1)"ITisanevilinfluenceontheyouthofourcountry."Apoliticiancondemningvideogaming?Actually,aclergymandenounc
AccordingtotheNationalSleepOrganization,howlongshouldadultssleepanight?ThesleepproblemsmanyJapanesewerefound
Ifyouask20randomgraduatestoexplainwhytheywenttobusinessschool,alargemajoritywilllistnetworkingasoneofthe
最新回复
(
0
)