首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ)计算沿
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ)计算沿
admin
2016-10-26
46
问题
设曲线积分 ∮
L
2[xφ(y)+ψ(y)]dx+[x
2
ψ(y)+2xy
2
-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.
(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);
(Ⅱ)计算沿L从点O(0,0)到M(π,
)的曲线积分.
选项
答案
(Ⅰ)由假设条件,该曲线积分与路径无关,将曲线积分记为∮
L
Pdx+Qdy,由单连通区域上曲线积分与路径无关的充要条件知,φ(y),ψ(y)满足[*],即 2[xtφ′(y)+ψ′(y)]=2xψ(y)+2y
2
-2φ(y). 由此得 x[φ′(y)-ψ(y)]=y
2
-φ(y)-ψ′(y). 由于x,y是独立变量,若令x=0,则y
2
-φ(y)-ψ′(y)=0.将之代回上式又得 φ′(y)-ψ(y)=0. 因此,φ(y),ψ(y)满足[*] 将第一个方程ψ(y)=φ′(y)代入第二个方程得φ″(y)+φ(y)=y
2
.这是二阶线性常系数非齐次方程,它的通解是φ(y)=c
1
cosy+c
2
siny+y
2
-2.由条件φ(0)=-2,φ′(0)=ψ(0)=1,得c
1
=0,c
2
=1,于是求得φ(y)=siny+y
2
-2,ψ(y)=φ′(y)=cosy+2y. (Ⅱ)求u使得du=Pdx+Qdy.把φ,ψ的关系式代入并整理得 Pdx+Qdy=φ(y)dx
2
+x
2
dφ(y)+ψ(y)d(2x)+2x[y
2
-φ(y)]dy =d[x
2
φ(y)]+ψ(y)d(2x)+2xdψ(y) =d[x
2
φ(y)+2xψ(y)]. 因此[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Q2u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
求下列不定积分:
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
幂级数x2n-1的收敛半径R=___________.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
微分方程y〞+y=-2x的通解为_______.
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
若x→0时,(1-ax2)1/4-1与xsinx的等价无穷小,则a=________.
过椭圆3x2+2xy+3y2=1上任一点作椭圆的切线,试求该切线与两坐标轴所围成的三角形面积的最小值.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及z轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒
随机试题
类毒素的特点是()
经营现金流量的规模和质量从根本上决定了企业偿还流动负债的能力。
会计信息质量要求原则包括()等原则。
岩溶是可溶性岩石在含有侵蚀性二氧化碳的流动水体作用下形成的地质现象。下面属于岩溶地貌形态的为:
按照规定支付的工程造价管理部门的定额编制管理费,属于工程施工成本中的( )。
商业银行在计量客户违约后的债项违约损失率时,应当包括()。
试述17世纪荷兰绘画的主要成就。
有研究表明,生物大灭绝在历史上发生过二十几次,大约每2600万年发生一次,似乎具有_____。对于物种大灭绝的发生是否真的如此频繁和有规律,还有争议。但即便是最_____的估计,也认为至少有5次物种大灭绝是非常明显的。填入划横线部分最恰当的一项是()。
联合国安理会常任理事国进行决策的规则是()。
“不可能A公司和B公司都没有中标。”如果上述断定是真的,则下述选项中,()必定是真的。
最新回复
(
0
)