首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度为 求:(Ⅰ)系数A; (Ⅱ)(X,Y)的联合分布函数; (Ⅲ)边缘概率密度; (Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
设二维随机变量(X,Y)的联合概率密度为 求:(Ⅰ)系数A; (Ⅱ)(X,Y)的联合分布函数; (Ⅲ)边缘概率密度; (Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
admin
2018-01-12
100
问题
设二维随机变量(X,Y)的联合概率密度为
求:(Ⅰ)系数A;
(Ⅱ)(X,Y)的联合分布函数;
(Ⅲ)边缘概率密度;
(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
选项
答案
(Ⅰ)根据分布函数的性质 ∫
—∞
+∞
∫
—∞
+∞
f(x,y)dxdy=∫
0
+∞
∫
0
+∞
Ae
—(2x+3y)
=[*]=1,解得A=6。 (Ⅱ)将A=6代入得(X,Y)的联合概率密度为 [*] 所以当x>0,y>0时, F(x,y)=∫
0
x
∫
0
x
6e
—(2x+3y)
dudυ=6∫
0
x
e
—2u
du∫
0
y
e
—3υ
dυ=(1一e
—2x
)(1一e
—3y
), 而当x和y取其它值时,F(x,y)=0。 综上所述,可得联合概率分布函数为 [*] (Ⅲ)当x>0时,X的边缘密度为 f
X
(x)=∫
0
+∞
6e
—(2x+3y)
dy=2e
—2x
, 当x≤0时,f
X
(x)=0。因此X的边缘概率密度为 [*] 同理可得Y的边缘概率密度函数为 [*] (Ⅳ)根据公式 [*] 已知R:x>0,y>0,2x+3y<6,将其转化为二次积分,可表示为 P[(X,Y)∈R]=[*]6e
—(2x+3y)
dxdy=6∫
0
3
e
—2x
[*]e
—3y
dy=2∫
0
3
(e
—2x
—e
—6
)dx=1一7e
—6
≈0.983。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PtX4777K
0
考研数学三
相关试题推荐
对于任意两事件A和B,若P(AB)=0,则()
设以X表示某一推销员一天花费在汽油上的款项(以美元计),以Y表示推销员一天所得的补贴(以美元计),已知X和Y的联合概率密度为(I)求边缘概率密度fX(x),fY(y);(Ⅱ)求条件概率密度fY|X(y|x),fX|Y(x|y);(Ⅲ)求x=12时
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
已知X的概率密度,aX+b~N(0,1)(a>0),则常数A=_______,a=_______,b=________.
设A,B为随机事件,且令求:(I)二维随机变量(X,Y)的概率分布;(Ⅱ)X和Y的相关系数ρXY
设随机变量X1的分布函数为F1(x),概率密度函数为f1(x),且E(X1)=1,随机变量X的分布函数为F(x)=0.4F1(x)+0.6F1(2x+1),则E(X)=______
A,B,C是二阶矩阵,其中 则满足BA=CA的所有矩阵A=_________.
计算二重积分(x2+y)dσ,其中D是由x2+y2=2y的上半圆,直线x=一1,x=1及x轴围成的区域.
证明(其中a≠b)三对角行列式
设f(x)=,求f(x)的间断点,并说明间断点的类型,如是可去间断点,则补充或改变定义使它连续.
随机试题
DearSirorMadam,Inresponsetoyouradvertisementinyesterday’sTimeEducationalSupplement,Iwouldliketoapplyfort
简述社会变迁的特点。
建设社会主义生态文明,必须放在首位的是()
关于严重呕血患者的饮食护理,正确的是()
由人造板材做成的家具在室内释放较高浓度的有害气体主要是()。
有毒气体和可燃气体检测器和现场报警器的安装位置需要符合要求,下列说法中,不正确的是()。
设计合同正常履行情况下,应在()时终止合同。
【背景资料】某新建港口工程,其中包括一条600m长防波堤,2座5万t级码头。防波堤为抛石斜坡堤结构,大块石护面,堤身处原泥面下为厚薄不均的淤泥,码头为重力式沉箱结构。该项目的EPC承包商经过经济技术比较确定:(1)防坡堤堤心石填筑采用爆炸(爆破)排淤
任何哲学都是()。
请在“答题”菜单中选择相应的命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。某单位的办公室秘书小马接到领导的指示,要求其提供一份最新的中国互联网络发展状况统计情况。小马从网上下载了一份未经整理的原稿,按下列要求帮助他
最新回复
(
0
)