首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
admin
2016-10-20
68
问题
如果秩r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s
,α
s+1
),证明α
s+1
可由α
1
,α
2
,…,α
s
线性表出.
选项
答案
设r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s
,α
s+1
)=r,且α
i1
,α
i2
,…,α
ir
是向量组α
1
,α
2
,…,α
s
的极大线性无关组,那么α
i1
,α
i2
,…,α
ir
也是α
1
,α
2
,…,α
s
,α
s+1
的极大线性无关组.从而α
s+1
可由α
i1
,α
i2
,…,α
ir
线性表出.那么α
s+1
可由α
1
,α
2
,…,α
s
线性表出. 或者考察方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=α
s+1
.因为r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s
,α
s+1
),所以方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=α
s+1
有解.因此α
s+1
可由α
1
,α
2
,…,α
s
线性表出.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PqT4777K
0
考研数学三
相关试题推荐
2
[*]
1
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
如果n个事件A1,A2,…,An相互独立,证明:
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维.林德伯格(Levy-Lindherg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn
随机试题
能直接转变为α-酮戊二酸的氨基酸为
(2005年)方程y’=p(x)y的通解是()。
基金管理人的()负责制定书面的合规政策。
A、 B、 C、 D、 C第一组图形均为轴对称图形,第二组图形均为中心对称图形,由此选择C。
某公司举行假面舞会。张先生与张女士头戴不同颜色的面具相遇。“我是一位先生。”戴红色面具的那位说。“我是一位女士。”戴黄色面具的那位说。说完后,两人都笑了。因为他们两人中至少有一个人在说谎。据此,可以推断出下列哪项判断为真?()
根据下列材料回答问题。2015年上半年A区完成规模以上工业总产值289.9亿元,同比下降9.4%,降幅比1—5月扩大0.7个百分点,比1—4月扩大2.2个百分点,比一季度扩大7.5个百分点。其中,上半年A区两大主导行业汽车制造业完成产值51.6亿
以下关于企业信息处理的叙述中,不正确的是_______。
Aschildrengetolder,self-disciplineshouldtaketheplaceofimposeddiscipline.Constrainsbecomeinternalizedandchildren
A、Itwillreducegovernmentrevenues.B、Itwillstimulatebusinessactivities.C、Itwillmainlybenefitthewealthy.D、Itwillc
Incitieswithrentcontrol,thecitygovernmentsetsthemaximumrentthatalandlordcanchargeforanapartment.Supporterso
最新回复
(
0
)