首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得 fˊ(ξ)=2∫01f(x)dx.
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得 fˊ(ξ)=2∫01f(x)dx.
admin
2016-09-13
57
问题
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得
fˊ(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为fˊ(x)在[0,1]上连续,所以,fˊ(x)在[0,1]上有最小值和最大值,设为m,M,即有x
1
,x
2
∈[0,1],使fˊ(x
1
)=m,fˊ(x
2
)=M. 由中值定理,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)-f(0)=fˊ(η)x,于是有 fˊ(x
1
)x=mx≤f(x)=f(x)-f(0)=fˊ(η)x≤Mx=fˊ(x
2
)x, 积分得 fˊ(x
1
)∫
0
1
xdx≤∫
0
1
f(x)dx≤fˊ(x
2
)∫
0
1
xdx, 即[*]fˊ(x
1
)≤∫
0
1
f(x)dx≤[*]fˊ(x
2
),故fˊ(x
1
)≤2∫
0
1
f(x)dx≤fˊ(x
2
). 因为fˊ(x)在[0,1]上连续,由介值定理,必有ξ∈[x
1
,x
2
][*][0,1],或ξ∈[x
2
,x
1
][*][0,1],使fˊ(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PRT4777K
0
考研数学三
相关试题推荐
[*]
[*]
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
判断下列级数的敛散性
计算高斯积分其中,r=(x,xo)i+(y-yo)j+(z-zo)k,r=|r|,n是封闭曲面∑的外法向量,点Mo(xo,yo,zo)是定点,点M(x,y,z)是动点,研究两种情况:(1)Mo在∑的外部;(2)Mo在∑的内部.
已知三角形三个顶点坐标是A(2,-1,3),B(1,2,3),C(0,1,4),求△ABC的面积.
本题考察有趣的雪花曲线.雪花曲线是这样作出来的:以边长为1的等边三角形作为基础,第一步:将每边三等分,以每边的中间一段为底各向外作一个小的等边三角形,随后把这三个小等边三角形的底边删除.第二步:在第一步得出的多边形的每条边上重复第一步,如此无限地继续下去,
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
随机试题
检索现代百科知识,一般可利用的工具书有()。
根据《中华人民共和国个人信息保护法》,下列说法不正确的是:
Marysawherson______thepianowhenshecametotheroom.
视神经孔后前轴位摄影,矢状面与台面呈
经络系统中能加强经脉之间在浅层相互联系的主要是
A.分层B.破裂C.起昙D.转相E.絮凝乳剂中分散相乳滴合并,且与连续相分离成不相混溶的两层液体的现象称为()。
选择地铁基坑围护结构形式,应根据()等,经技术经济综合比较后确定。
下列标准中,(34)是推荐性行业标准。(2011年5月试题34)
Readthefollowingtextanddecidewhichanswerbestfitseachspace.Forquestions26-45,markoneletterA,B,CorDony
TheGameoftheNameHerecomesJohnSmithwalkingtowardme.Eventhoughbeisbutapassingacquaintance,theAmericangree
最新回复
(
0
)