首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
admin
2017-09-15
95
问题
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=O,得|aE-A|.|bE-A|=0,则|aE-A|=0或者 |bE-A|=0.又由(aE-A)(bE-A)=O,得r(aE-A)+r(bE-A)≤n. 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n. 所以r(aE-A)+r(bE-A)=n. (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值. 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对 应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对 应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以 A一定可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Ozk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
由Y=lgx的图形作下列函数的图形:
求下列各微分方程的通解(1)2y〞+yˊ-y=2ex;(2)y〞+a2y=ex;(3)2y〞+5yˊ=5x2-2x-1;(4)y〞+3yˊ+2y=3xe-x;(5)y〞-2yˊ+5y=exsin2x;(6)y〞-6yˊ+9y=
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
求下列极限:
在曲线y=(x-1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y≥0),则区域D绕x轴旋转一周所成的几何体的体积为__________.
随机试题
简述课堂教学的基本环节。
设二维随机变量(X,Y)的分布函数为F(x,y),则P{X≤0,Y≤0}用F(x,y)表示为________.
BreastcancerissecondonlytoskincancerasthemostcommonmalignancydiagnosedinwomenintheUnitedStates.In2001,abou
临床上检测血清淀粉酶,主要用于诊断()。
现金流量表中现金流入中有一项是流动资金回收,该项现金流入发生在()。
下列各项中,不属于公司分立功能的有()。
某会计师事务所拥有170万元的流动资产及90万元的流动负债,下列交易可以使该事务所流动比率下降的有()。
下面对李健吾的《雨中登泰山》一文分析正确的有()。
2011年12月10出现了月全食,月全食全程持续了将近6个小时,我国几乎所有地区都能看到这一天象。完成下列问题。发生月全食这一天,杭州()。
某人出生于20世纪80年代的偶数年,若他的m生年份无法写成两个平方数之差,则到2012年他至少有()大?
最新回复
(
0
)