首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
空间n个点Pi(xi,yi,zi),i=1,2,…,n,n≥4.矩阵的秩记为r,则n个点共面的充分必要条件是( )
空间n个点Pi(xi,yi,zi),i=1,2,…,n,n≥4.矩阵的秩记为r,则n个点共面的充分必要条件是( )
admin
2016-04-14
82
问题
空间n个点P
i
(x
i
,y
i
,z
i
),i=1,2,…,n,n≥4.矩阵
的秩记为r,则n个点共面的充分必要条件是( )
选项
A、r=1.
B、r=2.
C、r=3.
D、1≤r≤3.
答案
D
解析
先举例说明为什么不选(A)、(B)、(C).例子如下:取点P
1
(1,1,1),P
2
(2,2,2),P
3
(3,3,3),
P
4
(4,4,4).此4点在一条直线上,显然共面.矩阵
的秩为2,所以不选(A)、(C).又如P
1
(1,0,0),P
2
(0,0,0),P
3
(0,0,1),P
4
共面(共面方程x+y+z=1),矩阵
的秩为3,不选(A)、(B).以下证明(D)是正确的.证明如下:
设这n个点共面,则其中任取4个点,例如P
1
,P
2
,P
3
与P
4
也必共面.于是
其中最后一个行列式为零来自于三点式平面方程.所以l≤r≤≤3.反之,设1≤r≤3,则A中任取一个4阶矩阵,其对应的行列式必为零,因此任意4点必共面,所以这n个点必共面.证毕.
转载请注明原文地址:https://www.kaotiyun.com/show/Oww4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
函数f(x,y)=2x-y+1满足x2+y2=5的最大值与最小值分别为()
求微分方程的通解.
求函数f(x,y)=4x-4y-x2-y2在区域D:x2+y2≤18上的最大值和最小值.
A、 B、 C、 D、 D积分区域的直角坐标形式为D={(x,y)|x2+y2≤x,y≥0},则原式=∫01dxf(x,y)dy,应选D.
设fn(x)=Cn1cosx-Cn2cos2x+…+(-1)n-1Cnncos2x,证明:对任意自然数n,方程fn(x)=1/2在区间(0,π/2)内有且仅有一个根.
已知y”+(x+3e2y)(y’)3=0(y’≠0),当把y视为自变量,而把x视为因变量时:在新形式下求方程的通解.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组Ax=0的通解为__________.
随机试题
女婴,孕35周分娩出生,体重1200g,生后吸吮能力差,皮肤胎毛多,乳腺结节<3mm,大阴唇不能遮盖小阴唇。关于该新生儿的护理,错误的是
简述病毒性心肌炎的临床表现。
女,28岁。发现血压升高3年,下肢无力1年。无高血压家族史,查体:BP160/100mmHg,无向心性肥胖,无满月脸和水牛背,未见紫纹,双下肢无水肿。实验室检查:尿比重1.005,尿pH7.0,余正常。血钠149mmol/L,血钾3.1mmol/L,肝肾功
如果该批货物采用的纸箱尺寸为60cm×40cm×20cm,每箱毛重为8.8kg,每箱净重为8.2kg,用40英尺刚质集装箱。请你以跟单员的身份,计算该批货物需要几个40英钢质集装箱?
根据《上市公司证券发行管理办法》规定,上市公司非公开发行股票,应当符合的条件有()。
世界多极化的发展趋势日益明显,主要是因为()。
凯恩斯乘数理论中对消费所做的假设,与持久收入理论是否一致?若按持久收入理论,乘数会出现怎样的变化?
关于奔腾和安腾的主要区别,下列描述正确的是()。
Whoisthespeaker?
AnoverpassonInterstate38inLakeviewCounty______yesterday,duetohighfloodwaters.
最新回复
(
0
)