首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设b>a>0,f(x)在[a,b]上连续,单调递增.且f(x)>0,证明:存在点ξ∈(a,b)使得a2f(b)+b2f(a)=2ξ2f(ξ).
设b>a>0,f(x)在[a,b]上连续,单调递增.且f(x)>0,证明:存在点ξ∈(a,b)使得a2f(b)+b2f(a)=2ξ2f(ξ).
admin
2017-07-26
77
问题
设b>a>0,f(x)在[a,b]上连续,单调递增.且f(x)>0,证明:存在点ξ∈(a,b)使得a
2
f(b)+b
2
f(a)=2ξ
2
f(ξ).
选项
答案
令F(x)=2x
2
f(x)一a
2
f(b)一b
2
f(a). 显然F(x)在[a,b]上连续 且 F(a)=a
2
[f(a)一f(b)]+f(a)(a
2
一b
2
)<0, F(b)=f(b)(b
2
一a
2
)+b
2
[f(b)一f(a)]>0. 由零点定理,至少存在一个点ξ∈[a,b]使得F(ξ)=0, 即 a
2
f(b)+b
2
f(a)=2ξ
2
f(ξ).
解析
作辅助函数F(x)=2x
2
f(x)一a
2
f(b)一b
2
f(a),F(x)在[a,b]上用零点定理.
转载请注明原文地址:https://www.kaotiyun.com/show/OuH4777K
0
考研数学三
相关试题推荐
设f(x,y)在[a,b]×[c,d]上连续,,证明:gxy=gyx(x,y)=f(x,y)(a<x<b,c<y<d).
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
函数f(x)=的无穷间断点的个数为
设中与A等价的矩阵有()个.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
随机试题
惊风的好发年龄是
瑞典甲公司为宣传产品发放宣传画册,北京乙服装公司未经许可将画册中的10幅照片用作本公司广告宣告。下列选项中正确的有()。
背景资料:果水闸除险加固工程内容包括土建施工,更换启闭机、闸门及机电设备。施工表(不合设备采购)通过电子招标交易平台交易,招标文件依据《水利水电工程标准施工招标文件》(2009年版)编制,工程量清单采取《水利工程工程量清单计价规范》(GB1050
2011年12月初某企业“应收账款”科目借方余额为300万元,相应的“坏账准备”科目贷方余额为20万元,本月实际发生坏账损失6万元。2011年12月31日经减值测试,该企业应补提坏账准备11万元。假定不考虑其他因素,2011年12月31日该企业资产负债表“
“飞歌”是最具代表性的一种壮族民歌。()
这学期乐乐没有参加刘老师亲戚办的校外补习班,刘老师便经常找乐乐的茬,上周还把他调到教室最后一排坐,乐乐感觉刘老师不如以前那样喜欢自己了。这个材料表明刘老师没有做到()。
经济上落后的国家在哲学上仍然能够演奏第一小提琴,18世纪的法国对英国来说是如此,后来的德国对英法两国来说也是如此。这表明()。
公诉案件的被害人不享有的诉讼权利是()。
“侧隐之心为仁之端,羞恶之心为义之端,恭敬之心为礼之端,是非之心为智之端”,此谓“四善端”。它的提出者是:
Thenowextinctpassengerpigeonhasthedubioushonorofbeingthelastspeciesanyoneeverexpectedtodisappear.Atonepoint
最新回复
(
0
)