首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证下列函数都是所给微分方程的解,其中哪些是通解? (1)x2y〞-2xyˊ+2y=0,y=x(C1+C2x); (2)y〞=2yˊ+2y=ex,y=ex(C1cosx+C2 sinx+1); (3)y〞+4y=0,y=C1sin2x+C2sinxcosx
验证下列函数都是所给微分方程的解,其中哪些是通解? (1)x2y〞-2xyˊ+2y=0,y=x(C1+C2x); (2)y〞=2yˊ+2y=ex,y=ex(C1cosx+C2 sinx+1); (3)y〞+4y=0,y=C1sin2x+C2sinxcosx
admin
2014-07-17
106
问题
验证下列函数都是所给微分方程的解,其中哪些是通解?
(1)x
2
y〞-2xyˊ+2y=0,y=x(C
1
+C
2
x);
(2)y〞=2yˊ+2y=e
x
,y=e
x
(C
1
cosx+C
2
sinx+1);
(3)y〞+4y=0,y=C
1
sin2x+C
2
sinxcosx;
(4)xy〞+yˊ=0,y=C
1
lnx
C
2
;
(5)y〞-4xyˊ+(4x
2
-2)y=0,y=(C
1
+C
2
x)e
x
2
;
(6)y〞-9y=9,y=C
1
e
-3x
+C
2
e
2-3x
-1.
选项
答案
(1)y=C
1
x+C
2
x
2
,2y=2C
1
x+2C
2
x
2
,yˊ=C
1
+2C
2
x,-2xyˊ=-2C
1
x-4C
2
x
2
,y〞=2C
2
,x
2
y〞=2C
2
x
2
,故x
2
y〞-2xyˊ+2y=0,即y=x(C
1
+C
2
x)是原方程的解,又因为C
1
与C
2
相互独立,故又是通解. (2)y=e
x
(C
1
cosx+C
2
sinx+1), 2y=2e
x
(C
1
cosx+C
2
sinx+1), yˊ=e
x
[(C
1
+C
2
)cosx+(C
2
-C
1
)sinx+1], 2yˊ=2e
x
[(C
1
+C
2
)cosx+(C
2
-C
1
)sinx+1], y〞=e
x
(2C
2
cosx-2C
1
sinx+1) =2e
x
(C
2
cosx-2C
1
sinx+1), 故 y〞-2yˊ+2y=e
x
. 又C
1
与C
2
相互独立,从而y=e
x
(C
2
cosx+C
2
sinx+1)又是原方程的通解. (3)y=C
1
sin2x+C
2
sinxcosx(C
1
+C
2
/2)sin2x=ksin2x, 其中 k=C
2
/2+C
1
,即C
1
与C
2
不相互独立. 又yˊ=2kcos2x,y〞=-4ksin2x,故y〞+4y=0.故y=C
1
sin2x+C
2
sinxcosx是原方程的解,但不是通解. (4)y=C
1
lnx
C
2
=C
1
C
2
ln|x|=kln|x|,其中k=C
1
C
2
,即C
1
与C
2
不相互独立. 又yˊ=k/x,y〞=-k/x
2
,故y〞+ky=0,从而y=C
1
lnx
C
2
是原方程的解,但不是通解. (5)y=(C
1
+C
2
x)e
x
2
, (4x
2
-2)y=(4x
2
-2)(C
1
+C
2
x)e
x
2
=2(2C
2
x
5
+2C
1
x
2
一C
2
x-C
1
)e
x
2
, yˊ=(2C
2
x
2
+2C
1
x+C
2
)e
x
2
, 4xyˊ=4(2C
2
x
3
+2C
1
x
2
+C
2
x)e
x
2
, y〞=2(2C
2
x
3
+2C
1
x
2
+3C
2
x+C
1
)e
x
2
. 故y〞=4xyˊ+4(x
2
-2)y=0,又C
1
与C
2
相互独立,从而y=(C
1
+C
2
x)e
x
2
又是原方程的通解. (6)y=C
1
e
-3x
+C
2
e
2-3x
-1=(C
1
+C
2
e
2
)e
-3x
+1=ke
-3x
-1, 即C
1
与C
2
不是相互独立的. yˊ=-3ke
-3x
,y〞=9ke
-3x
,故y〞-9y=9,又C
1
与C
2
不是相互独立的,从而y=C
1
e
-3x
+C
1
e
2-3x
=1是解,但不是通解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/OhU4777K
0
考研数学三
相关试题推荐
民族区域自治的核心是()
中国革命的前途问题实际就是
当前,随着时代发展,我国国家安全内涵和外延比历史上任何时候都要丰富,时空领域比历史上任何时候都要宽广,内外因素比历史上任何时候都要复杂,必须坚持总体国家安全观,其中国家安全的宗旨是
《建设高标准市场体系行动方案》指出,要通过5年左右的努力,基本建成()的高标准市场体系,为推动经济高质量发展、加快构建新发展格局、推进国家治理体系和治理能力现代化打下坚实基础。①统一开放②竞争有序③制度完备
国家主席习近平2021年12月22日下午在中南海瀛台会见来京述职的香港特别行政区行政长官林郑月娥。习近平指出,实践证明,()符合“一国两制”原则,符合香港实际,为确保“一国两制”行稳致远、确保香港长期繁荣稳定提供了(
近年来,我国立法机构和相关部门将酒驾、家暴、不文明旅游、高空坠物等有违社会公德但部分群众认识模糊的行为,在法律制度层面予以更为明确的规范,有效促进了移风易俗、增进了社会文明。这是法律为思想道德建设提供制度保障的有力证明。法律为思想道德提供制度保障体现在
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
将函数分别展开成正弦级数和余弦级数.
计算,其中f(x,y,z)为连续函数,∑为平面x-y+z=1在第四卦限部分的上侧.
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
随机试题
生物—心理—社会医学模式强调的是()。
男性,15岁,发现肉眼血尿伴尿量减少1周。血压140/90mmHg,眼睑及双下肢水肿。3周前左下肢皮肤叮咬后感染。化验尿蛋白为(++),红细胞10~15/HP,血红蛋白106g/L,血肌酐216μmol/L,血清C3低。最可能的诊断是
口腔内除牙齿外还应清洁洗刷的部位是
脐带中的脐静脉有
商业银行信贷业务人员拟定的面谈工作提纲中,可包含拟向客户推介的信贷产品。()
位于某市区的某娱乐中心是一家专门经营歌厅、舞厅、电子游戏、台球等娱乐业务的企业。2012年3月,娱乐城向当地主管税务机关报送了2011年《企业所得税年度纳税申报表》等纳税资料。资料记载的业务情况及收支状况如下:(1)取得歌舞厅门票收入168万元,
物流监控的核心是()。
下列关于我国行政区划的表述,正确的有()。(2010年多选53)
某系统总体结构图如下图所示:该系统总体结构图的深度是( )。
I’musuallyfairlyskepticalaboutanyresearchthatconcludesthatpeopleareeitherhappierorunhappierormoreorlesscerta
最新回复
(
0
)