首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)2f(x),证明存在使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)2f(x),证明存在使得F’’(x0)=0.
admin
2017-05-10
80
问题
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)
2
f(x),证明存在
使得F’’(x
0
)=0.
选项
答案
显然[*]于是由罗尔定理知,存在[*] 使得F’(x
1
)=0.又 [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在[*] 使得F’’(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是存在x
0
=2π+x
0
*
,即[*]使得 F’’(x
0
)=F’’(x
0
*
)=0.
解析
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明存在
,使得F’’(x
0
*
)=0即可.
转载请注明原文地址:https://www.kaotiyun.com/show/OWH4777K
0
考研数学三
相关试题推荐
设f(x)在(-l,l)内可导,证明:如果f(x)是偶函数,那么fˊ(x)是奇函数,如果f(x)是奇函数,那么fˊ(x)是偶函数.
如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图片分别是直径为1的下、上半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=,则下列结论正确的是
y=2x的麦克劳林公式中xn项的系数是_________.
2
已知是矩阵的一个特征向量.问A能否相似于对角阵?说明理由.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
利用三重积分计算下列立体Ω的体积:(1)Ω={(x,y,z)|,a>0,b>0,c>0};(2)Ω={(x,y,z)|x2+z2≤1,|x|+|y|≤1};(3)Ω={(x,y,z)|x2+y2+z2≤1,0≤y≤ax,a>0}.
在每次试验中,事件A发生的概率为0.5,利用切比雪夫不等式估计在10()0次独立重复试验中,事件A发生的次数在400一600之间的概率≥_____.
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0.求证:如果f(x)在(0,1)内不恒等于零,则必存在ξ∈(0,1),使得f(ξ)f’(ξ)>0.
随机试题
EnergyCycle①Doyoufindgettingupinthemorningsodifficultthatit’spainful?Thismightbecalledlaziness,butDr.
软盘被写保护之后,则()
A.奎尼丁B.利多卡因C.普罗帕酮D.普萘洛尔E.胺碘酮属于Ib类的钠通道阻滞剂是()。
( )是发行人向特定的投资者发售股份的募股要约文件,仅供要约人认股之用。
Ifcitynoises______fromincreasing,people______shouttobeheardevenatthedinnertablein20yearsfromnow.
下列有关生产和服务提供的说法正确的有________。
下列不属于行政决策原则的是()。
设f(x)=,求f(x)的极值.
Faces,likefingerprints,are【C1】______Didyoueverwonderhowitispossibleforustorecognizepeople?Evena【C2】______writer
TheEnglishnationalcharacterisdualistic:Oneaspectisconservative,theotherextroverted(性格外向的).Thepubisafineexample
最新回复
(
0
)