首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,a是一个实数. (1)求作可逆矩阵U,使得U-1AU是对角矩阵. (2)计算|A—E|.
已知A=,a是一个实数. (1)求作可逆矩阵U,使得U-1AU是对角矩阵. (2)计算|A—E|.
admin
2018-11-20
66
问题
已知A=
,a是一个实数.
(1)求作可逆矩阵U,使得U
-1
AU是对角矩阵.
(2)计算|A—E|.
选项
答案
(1)先求A的特征值. |λE一A|=[*]=(λ一a一1)
2
(λ一a+2) A的特征值为a+1(二重)和a—2(一重). 求属于a+1的两个线性无关的特征向量,即求[A一(a+1)E]X=0的基础解系: [*] 得[A一(a+1)E]X=0的同解方程组 x
1
=x
2
+x
3
, 得基础解系η
1
=(1,1,0)
T
,η
2
=(1,0,1)
T
. 求属于a—2的一个特征向量,即求[A一(a一2)E]X=0的一个非零解: [*] 得[A一(a—2)E]X=0的同解方程组 [*] 得解η
3
=(一1,1,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*] (2)A—E的特征值为a(二重)和a一3,于是|A—E|=a
2
(a—3).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NwW4777K
0
考研数学三
相关试题推荐
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设矩阵若A有一个特征值为3,求a;
设相似于对角阵,求:A100.
设AX=A+2X,其中A=,求X.
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=0.
随机试题
下列各句中,没有语病的一句是
女性,56岁,上腹不适,嗳气一个月,进食如常,胃镜示:胃角小弯侧1cm×0.6cm局限性黏膜粗糙、糜烂,亚甲蓝喷洒后着色明显。下列治疗首选
某建筑物人口为防雷跨步电压,下述哪一项做法不符合规范规定?()
某双代号网络图有A、B、C、D、E五项工作,A、B完成后D才能开始,B、C完成后E开始,下列图形中逻辑关系正确的是()。
客运企业等级是指对客运企业()、资产规模、车辆条件、经营业绩、安全状况和服务质量等方面的综合评价。
()。
求曲线y=3-|χ2-1|与χ轴围成的封闭图形绕y=3旋转所得的旋转体的体积.
=__________(其中口为常数).
在请求页式管理中,当硬件变换机构发现所需的页不在内存时,产生【】中断信号,中断处理程序作相应的处理。
应用入侵防护系统(AIPS)一般部署在()。
最新回复
(
0
)