首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03年)设n维向量α=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E-ααT,B=E+aaT,其中A的逆矩阵为B,则a=_______.
(03年)设n维向量α=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E-ααT,B=E+aaT,其中A的逆矩阵为B,则a=_______.
admin
2017-05-26
51
问题
(03年)设n维向量α=(a,0,…,0,a)
T
,a<0;E为n阶单位矩阵,矩阵A=E-αα
T
,B=E+
aa
T
,其中A的逆矩阵为B,则a=_______.
选项
答案
-1
解析
由A
-1
=B,得
又易验证矩阵αα
T
≠0,故得
=0
但α
T
α=‖α‖
2
=2a
2
,代入上式,得
-1-2a=0,或(2a-1)(a+1)=0
a=-1,或a=
(舍去),故a=-1.
转载请注明原文地址:https://www.kaotiyun.com/show/NtH4777K
0
考研数学三
相关试题推荐
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-8x2x3,为标准形.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx标准形,并写出所用正交变换;
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.(I)求该二次型表达式;(Ⅱ)求正交变换x=Qy化二次型为标准形,并写出所用坐标变换.
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
随机试题
哪些人或机构可以决定启动审判监督程序?()
Accordingtotheaffectivefilterhypothesis:______,self-confidence,andanxietydeterminesthespeedofsuccessinlanguagel
矫形器的基本作用不包括
医学史上第一次卫生革命的标志是( )
本工程工作坑降水井宜如何布置?根据背景资料,在顶进作业时应做哪些降排水工作?指出加固方案和顶进施工中存在的引起列车颠覆的隐患。
在人生的道路上,每个人都有失败的经历,面对失败,我们该如何应对?请以“Don’tbeafraidoffailures”为题写一篇英语短文。短文内容应包括:differentattitudestowardsfailure,oneofyou
一项研究能够实现其目的的程度称为()
A、 B、 C、 A
Itisthusofexceptionalimportance______extinctiontheories,butuntilnowproblemswithdatinghavelimiteditspotential.
A、Theywillnotbringrealbenefitstothestaff.B、Theyconcernasmallnumberofpeopleonly.C、Theyarearbitrarilysetbyth
最新回复
(
0
)