首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2018-03-11
74
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ
1
∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
构造辅助函数 F(x)=f(x)一g(x), 由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,n)使得 [*] 若x
1
=x
2
,令c=x
1
,则F(c)=0。 若x
1
2,因 F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0, 从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 F′(ξ
1
)=F′(ξ
2
)=0。 再对F′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,存在ξ∈(ξ
1
,ξ
2
)c(a,b),有F"(ξ)=0,即 f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Nqr4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是r阶单位阵.
证明:若三事件A,B,C相互独立,则A∪B及A—B都与C独立.
设f(x)的导数在x=a处连续,又=一1,则
计算线积分(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中c是曲线x2+y2+z2=2Rx,x2+y2+z2=2ax(z>0,0<a<R),且按此方向进行,使它在球的外表面上所围区域∑在其左方。
设有直线则过L1且与L2平行的平面方程为________。
设以元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设Y服从(0,3)上的均匀分布,X与Y相互独立,则行列式的概率为________.
求函数的极值.
(2004年)欧拉方程的通解为__________。
(2012年)若函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex,则f(x)=
随机试题
Thelawyeradvisedhimtodropthe______,sincehestandslittlechancetowin.
肝癌患者突发右上腹剧烈疼痛伴血性腹水,最可能是
关于被害人承诺,下列哪一选项是正确的?
《中国21世纪初可持续发展行动纲要》提出的重点实施领域包括资源利用与保护领域、生态保护和建设领域、环境保护和污染防治领域、()。
下列关于商业银行对同一借款人借款比例限制的说法中,不正确的是()
承运人根据运输计划和托运人的要求,在规定时间内把旅游者运达目的地,是遵循了旅游交通运输的()原则。
18世纪末资产阶级反封建革命斗争的著名纲领性文件,并且以后成为法国宪法序言的是()。
以下属于创新教育基本特征的是()。
近年来,国内各地景区门票逢“节”必涨,5A级景区集体跨人“百元时代”,让众多游客纷纷大呼“玩不起”。根据2013年10月1日起施行的《旅游法》规定,景区提高门票价格应该提前()公布。
以下叙述中正确的是
最新回复
(
0
)