首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2019-07-12
93
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+φ
3
(x)
B、C
1
[φ
1
(x)一φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[(φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)一φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,
所以φ
1
(x)一φ
3
(x),φ
2
(x)一φ
3
(x)为方程有y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,于是方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)一φ
3
(x)]+C
2
[φ
2
(x)一φ
3
(x)]+φ
3
(x)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1一C
1
一C
2
或C
1
+C
2
+C
3
=1,选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/NkJ4777K
0
考研数学三
相关试题推荐
(2001年)设函数f(x)的导数在x=a处连续,又,则()
(2005年)当a取值为()时,函数f(x)=2x3一9x2+12x—a恰有两个不同的零点。
已知当x>0与y>0时则函数f(x,y)在点(x,y)=(1,1)处的全微分df|(1,1)=________.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:绝对收敛.
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求
设A为n阶矩阵,下列结论正确的是().
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=______.
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1—X.已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=___________.
三个箱子,第一个箱子中有4个黑球与1个白球,第二个箱中有3个黑球与3个白球,第三个箱中有3个黑球与5个白球.现随机地选取一个箱子从中任取1个球,则这个球为白球的概率是___________;若已发现取出的这个球是白球,则它不是取自第二个箱子的概率是____
随机试题
设x∈[-1,1],则arcsinx+arccosx=_________.
脂肪细胞不能利用甘油是因为缺乏
半夏的归经是()
疝囊壁部分由腹内脏器构成的腹外疝属
治疗厥阴头痛用
对于洁净厂房防火,下列说法正确的是()。
在汉朝以前,史书上关于蹴鞠的记载只有零星碎片,但是从中不难看出,蹴鞠至少起源于春秋战国时代,而且兼具娱乐和锻炼的性质,并且在此后的数千年中,蹴鞠一直兼具这两种性质。到了汉代,蹴鞠得到快速发展。最先对蹴鞠的发展起到关键作用的人物,是刘邦的父亲刘太公。刘邦称帝
Workingatnonstandardtimes—evenings,nights,orweekends—istakingitstollonAmericanfamilies.One-fifthofallemployedAm
一个关系中属性个数为1时,称此关系为
Somepeoplethinkofpoliticsasagame.Butanonlinegamemakespeople【B1】______themselvesdoingoneofthehardestjobsinAm
最新回复
(
0
)