首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求a,b及可逆矩阵P,使得P-1AP=B.
求a,b及可逆矩阵P,使得P-1AP=B.
admin
2021-11-25
16
问题
求a,b及可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE-A|=0,得λ
1
=-1,λ
2
=1,λ
3
=2,因为A~B,所以A的特征值为λ
1
=-1,λ
2
=1,λ
3
=2 由tr(A)=λ
1
+λ
2
+λ
3
,得a=1,再由|A|=b=λ
1
λ
2
λ
3
=-2,得b=-2 即[*] 由(-E-A)X=0,得ξ
1
=(1,1,0)
T
由(E-A)X=0,得ξ
2
=(-2,1,1)
T
由(2E-A)X=0,得ξ
3
=(-2,1,0)
T
[*] 由(-E-B)X=0,得η
1
=(-1,0,1)
T
由(E-B)X=0,得η
2
=(1,0,0)
T
由(2E-B)X=0,得η
3
=(8,3,4)
T
[*] 由P
1
-1
AP
1
=P
2
-1
BP
2
,得(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B 令P=P
1
P
2
-1
=[*],则P
-1
AP=B
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Niy4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设A,B为两个n阶矩阵,下列结论正确的是()。
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
下列命题正确的是()。
设A,B为n阶正定矩阵,证明:A+B为正定矩阵。
设A为n阶非奇异矩阵,a是n维列向量,b为常数,.证明PQ可逆的充分必要条件是aTA-1a≠b.
星形线x=acos3t,y=asin3t所围图形的面积为__________。
考虑二元函数的下面4条性质(Ⅰ)f(x,y)在点(x0,y0)处连续;(Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续;(Ⅲ)f(x,y)在点(x0,y0)处可微;(Ⅳ)f(x,y)在点(x0,y0)处的两个偏导数存在;
设y=y(x)是二阶线性常系数微分方程y’’+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
随机试题
Forthispart,youaresupposedtowriteacompositionofabout100-120wordsbasedonthefollowingsituation.Remembertowri
麦冬的原植物属于
应急照明、道路照明和警卫照明正常运行情况下用电设备端子处电压偏差允许值+5%~-2.5%。()
零售商业物业的经营管理工作主要包括()
下列选项中,不属于项目费用控制软件的是________。
△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,,则△ABC的面积为()
民族共同语言,指同一个民族的人们在生产、生活中,彼此之间交流思想感情和交往联系所共同使用的言语。下列语言不属于民族共同语言的是( )。
Whatisthepassagemainlyabout?Intheeyesoftheauthor,theEU’sBarcelonasummit
TheJapanesesaytheysufferfromaneconomicdiseasecalled"structuralpessimism".Overseastoo,thereisatendencytoseeJ
Commercialaquaculturecanbea【B1】______andenvironmentallysustainableactivityifconductedwiththerightmethodsintherig
最新回复
(
0
)