首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33. 求可逆矩阵P,使得P-1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33. 求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2021-02-25
62
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3
3
.
求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
对应于λ
1
=λ
2
=1,解齐次线性方程组(E-B)x=0,得基础解系 ξ
1
=(-1,1,0)
T
,ξ
2
=(-2,0,1)
T
; 对应于λ
3
=4,解齐次线性方程组(4E-B)x=0,得基础解系 ξ
3
=(0,1,1)
T
. 令矩阵 [*] 则 [*] 因Q
-1
BQ=Q
-1
C
-1
ACQ=(CQ)
-1
A(CQ),记矩阵 [*] 故P即为所求的可逆矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NZ84777K
0
考研数学二
相关试题推荐
下列矩阵中两两相似的是
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设x与y均大于0,且x≠y,证明:<1.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
若三阶方阵,试求秩(A).
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
随机试题
按照规定的内容、法律地位和制定的程序不同,法律可以划分为根本法和普通法。其中,根本法又称
简述苍术、藿香、佩兰三药化湿之力的差别。
疱疹性口炎的病原体是
在一般情况下,影响舒张压最主要的因素是
【背景资料】某单位办公楼工程,总建筑面积2.6万平方米,地上16层,该工程基础采用桩基础,主体为框架~剪力墙结构,由某建筑施工企业负责施工。在工程施工过程中,发生了如下事件:事件一:在土方填筑过程中发现,回填土经夯实后检测,其
需求拉上的通货膨胀可以通俗表述为()。
关于人民陪审员,下列说法符合法律规定的是()。
在最近几年,某地区的商场里只卖过昌盛、彩虹、佳音三种品牌的电视机。1997年,昌盛、彩虹、佳音三种品牌的电视机在该地区的市场占有率(按台数计算)分别为25%、35%和40%。到1998年,几个品牌的市场占有率变成了昌盛第一、彩虹第二、佳音第三,其次序正好与
Listentothedirectionsandmatchtheplacesinquestions11-15totheappropriateplaceamongA-Eonthemap.Cafe
Thetraditionalbeliefthatawoman’splaceisinthehomeandthatawomanoughtnottogoouttoworkcanhardlybereasonably
最新回复
(
0
)