首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数S(x)=∫0x|cost|dt, (1)当n为正整数,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1); (2)求.
设函数S(x)=∫0x|cost|dt, (1)当n为正整数,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1); (2)求.
admin
2014-01-26
106
问题
设函数S(x)=∫
0
x
|cost|dt,
(1)当n为正整数,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1);
(2)求
.
选项
答案
(1)nπ≤x<(n+1)π时,注意到被积函数是非负的,于是有 ∫
0
nπ
|cosx|dx≤S(x)<∫
0
(n+1)π
|cosx|dx. 又因为|cosx|是以π为周期的甬数,存每个周期上积分值相等,所以 ∫
0
nπ
|cosx|dx=n∫
0
π
|cosx|dx=2n, ∫
0
(n+1)π
|cosx|dx=(n+1)∫
0
π
|cosx|dx=2(n+1). 因此当nπ≤x<(n+1)π时,有 2n≤S(x)<2(n+1). (2)由(1)知,当nπ≤x<(n+1)π时,有 [*], 当x→+∞时,有n→∞,根据夹逼定理得 [*]。
解析
[分析] 求解本题的关键是注意到被积函数|cost|是以π为周期的周期函数,从而在每个以π为长度的区间上的积分相等,这样利用积分的可加性可将积分区间分解为以π为长度的区间,进而得到所需的不等式.利用(1)中得到的不等式和夹逼定理即可求(2)中的极限.
[评注] 若f(x)是周期为T的周期函数,即f(xT)=f(x),则
∫
a
a+T
f(x)dx=∫
0
T
f(x)dx。
转载请注明原文地址:https://www.kaotiyun.com/show/NQ34777K
0
考研数学二
相关试题推荐
[*]
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3).(Ⅰ)证明存在η∈(0,2),使f(η)=f(0);(Ⅱ)证明存在ξ∈(0,3),使f’’(ξ)=0.
(09年)设某产品的需求函数为Q=Q(p),其对价格P的弹性εp=0.2,则当需求量为10000件时,价格增加1元会使产品收益增加_______.
(14年)设an=a,且a≠0,则当n充分大时有【】
(2009年)计算二重积分其中D={(x,y)|(x一1)2+(y一1)2≤2,y≥x}。
求定积分
设二次型f(x1,x2,x3)=(a1x1-x2)2+(a2x2-x3)2+(a3x3-x1)2,则当二次型f(x1,x2,x3)正定时,参数a1,a2,a3满足()。
求∫e2x(tanx+1)2dx.
随机试题
对国家发展战略、行业发展规划及技术政策分析,指的是企业制定电子商务战略的哪一步?
设矩阵相似,则x=_______,y=_______.
糖原累积病患儿的智能多_______________,黏多糖病患儿的智能多_______________。
A.丙酮酸激酶B.乳酸脱氢酶C.琥珀酸脱氢酶D.异柠檬酸脱氢酶三羧酸循环的关键酶是
骨折的并发症哪项应优先处理
心经的起止穴是
下列陈述不符合行为主义心理学观点的是()。
妈妈为了给过生日的小东一个惊喜,在一底面半径为20cm、高为60cm的圆锥形生日帽内藏了一个圆柱形礼物盒。为了不让小东事先发现礼物盒,该礼物盒的侧面积最大为多少?
=_______.
【B1】【B9】
最新回复
(
0
)