首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
设f(x)为连续函数,且F(x)=∫lnx1/xf(t)dt,则F’(x)=( )。
设f(x)为连续函数,且F(x)=∫lnx1/xf(t)dt,则F’(x)=( )。
admin
2022-08-12
42
问题
设f(x)为连续函数,且F(x)=∫
lnx
1/x
f(t)dt,则F’(x)=( )。
选项
A、1/xf(lnx)+1/x
2
f(1/x)
B、1/xf(lnx)+f(1/x)
C、1/xf(lnx)-1/x
2
f(1/x)
D、f(lnx)-f(1/x)
答案
A
解析
由变限积分求导公式得,f’(x)=f(lnx)·(lnx)’-f(1/x)·(1/x)’=1/xf(lnx)+1/x
2
f(1/x)。故本题选A。
转载请注明原文地址:https://www.kaotiyun.com/show/NOtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
材料:下面是某市教研员设计的《思想政治课堂教学综合评价量表》。问题:请根据思想政治课新课程教学评价理念,说一说该评价表总体设计上存在的问题。
为实施精准扶贫方略,某市政府的相关部门对贫困家庭的新增劳动力进行职业教育培训,实现一人长期就业,全家稳定脱贫。这一举措的依据是()。①劳动者就业是社会存在和发展的基础②促进就业是我国分配制度的基本要求③职业培训促进就业,就业是民生
文化创作方法有一百条、一千条,但是最根本、最关键、最牢靠的办法是扎根人民、扎根生活。以下与题干所述道理一致的是()。①世事洞明皆学问②艺术可以放飞想象的翅膀,但要脚踏实地③优秀作品既要有阳春白雪,也要有下里巴人④文运同国运相牵,
初中“平面直角坐标系”(第一节课)设定的教学目标如下:①了解有序数对的概念,体会有序数对在现实生活中应用的广泛性;②通过实例让学生认识有序数对,感受有序数对在确定点的位置中的作用。完成下列任务:(1)根据教学目标①,设计至少三个问题,并说明设
设A,B都是n阶矩阵,若有可逆矩阵P使得P—1AP=B,则称矩阵A与矩阵B()。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥>0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)≥f(a)g(1)请说明初中函数内容教学的要求,并结合
设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是()。
设f(x)是区间[a,b]上的连续函数,证明:存在ε∈[a,b],使得
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f′(x)≥0,g′(x)≥0。证明:对任何a∈[0,1],有
设可微函数f(x)定义在[a,b)]上,x0∈[a,b]点的导数的几何意义是().
随机试题
A.机械性绞窄性肠梗阻B.机械性单纯性肠梗阻C.麻痹性肠梗阻D.血运性肠梗阻早期蛔虫性肠梗阻属
患者,男,78岁,因慢性心力衰竭,心功能Ⅳ级入院。经治疗、护理。目前心功能已恢复至Ⅱ级,责任护士嘱患者可渐增加活动量,并说明长期卧床的危害,下列哪项不是长期卧床的危害
女性,60岁,有轻度高血压,伴有心动过速、轻度充血性心衰症状,有气喘和痛风史,首选的治疗药物是
下列纠纷中属于《仲裁法》调整范围的是:
招标人有权没收投标保证金的情形有()。
根据《企业所得税法》的规定,对关联企业所得不实的,可以按照下列()方法进行调整。
(2015年)恒利发展是在上海证券交易所挂牌的上市公司,股本总额10亿元,主营业务为医疗器械研发与生产。维义高科是从事互联网医疗业务的有限责任公司,甲公司和乙公司分别持有维义高科90%和10%的股权。为谋求业务转型,恒利发展于2018年6月3日,与维义高科
(57)工作在OSI参考模型网络层,它在不同的网络之间存储转发数据分组。
我们在学校里所学到的那些奇妙的东西都是多少代人的工作(1)绩,都是由世界上每个国家里的热忱的(2)力和无尽的(3)动所产生的。这一切都作为遗(4)交到我们手里,使我们可以领受它,尊重它,增进它,并且有朝一日能忠实地转交给我们的子孙(5)代。(1)
WomenmaybeinfectedbytheHIVvirusinadifferentwaythanmen,accordingtoarecentstudyrelease,suggestingitcouldbe
最新回复
(
0
)