首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02年)设函数f(χ),g(χ)在[a,b]上连续,且g(χ)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使 ∫abf(χ)g(χ)dχ=f(ξ)∫abg(χ)dχ.
(02年)设函数f(χ),g(χ)在[a,b]上连续,且g(χ)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使 ∫abf(χ)g(χ)dχ=f(ξ)∫abg(χ)dχ.
admin
2021-01-25
88
问题
(02年)设函数f(χ),g(χ)在[a,b]上连续,且g(χ)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
∫
a
b
f(χ)g(χ)dχ=f(ξ)∫
a
b
g(χ)dχ.
选项
答案
因为f(χ),g(χ)在[a,b]上连续,且g(χ)>0,由最值定理,知f(χ)在[a,b]上有最大值M和最小值m,即 m≤f(χ)≤M 故mg(χ)≤f(χ)g(χ)≤Mg(χ) ∫
a
b
mg(χ)dχ≤∫
a
b
(χ)g(χ)dχ≤∫
a
b
Mg(χ)dχ [*] 由介值定理知,存在ξ∈[a,b],使 [*] 即∫
a
b
(χ)g(χ)dχ=f(ξ)∫
a
b
g(χ)dχ
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Mux4777K
0
考研数学三
相关试题推荐
[2009年]袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数.求P(X=1|Z=0);
(11年)证明方程4arctanχ-χ+=0恰有两个实根.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B—2E)—1=________。
设A*是A的伴随矩阵,则(A*)-1=___________.
设D是由曲线xy+1=0与直线y+x=0及y=2围成的有界区域,则D的面积为__________.
已知矩阵和对角矩阵相似,则a=________。
设X1,X2,…,Xn为来自总体X的简单随机样本,而(0≤k≤n)
连续函数f(x)满足f(x)=3∫0xf(x-t)dt+2,则f(x)=______.
[2018年]设实二次型f(x1,x2,x3)=(x1-x2+x2)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)的规范形.
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
随机试题
Doctor’sorders:LetchildrenjustplayA)Imagineadrugthatcouldenhanceachild’screativityandcriticalthinking.Ima
女,55岁。风湿性心脏瓣膜病二尖瓣狭窄15年,心房颤动1年,无活动后心悸和气短。无夜间阵发性呼吸困难,既往无高血压、糖尿病、脑血管疾病史。超声心动提示左房内径5.3cm,患者抗栓治疗的首选药物是
个人取得下列所得应缴纳个人所得税的是()。
下列符合新现金管理内部控制规定的是()。
根据我国教师法规的有关规定,“弄虚作假、骗取教师资格的”与“品德不良、侮辱学生、影响恶劣的”教师,其教师资格将()。
本质上,具有NDM一1的所谓“超级病菌”只是耐药细菌家族中的新晋成员,大名鼎鼎的:MRSA(耐甲氧西林金黄色葡萄球菌)就由来已久了。当年被偶然发现的青霉素,正是用来对付金黄色葡萄球菌的。但随着抗生素的广泛使用,诱发产生了MRSA,使得青霉素失去了对该菌的效
20世纪末到21世纪初,信息传播的途径进一步_______,最突出的是视听手段和互联网空前快速的发展,声音和图像_______涌到了大家的面前;连那些识字不多的百姓,也能通过电视获得不少信息。填入画横线部分最恰当的一项是:
A、 B、 C、 D、 C题干图形除第一个以外,其他都由多个部分组成,由此我们考虑图形部分数。题干图形的部分数分别为1、2、3、4、5,选项中只有C项的部分数为6,应选C。
A、Theywanttolearnskills.B、Theywanttomakeafortune.C、Theyarestrickenbypoverty.D、Theywanttodothesamethingas
Whenwetalkaboutintelligence,wedonotmeantheabilitytogetagoodscoreonacertainkindoftest,oreventheabilityt
最新回复
(
0
)