首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
admin
2022-01-06
56
问题
设f(x,y)为连续函数,且f(x,y)=e
—x
2
—y
2
+
xy
2
f(u,υ)dudυ,其中D:u
2
+υ
2
≤a
2
(a>0),则f(x,y)=________.
选项
答案
e
—(x
2
+y
2
)
+π(1—e
—a
2
)xy
2
解析
注意
f(u,υ)dudυ为常数,记为A,由于xy
2
对u、υ来说为常数,因此对u,υ积分时可提到积分号外
f(x,y)=e
—x
2
—y
2
+Axy
2
.
求f(x,y)归结为求常数A.等式两边在D内积分得
d(x,y)dσ=
e
—(x
2
+y
2
)
dσ+A
xy
2
dσ ①
作极坐标变换
e
—(x
2
+y
2
)
dσ=∫
0
2π
dθ∫
0
a
e
—r
2
rdr= —πe
—r
2
|
0
a
=π(1—e
—a
2
又
xy
2
dσ=0 (D关于y轴对称,被积函数对x为奇函数),
将它代入①式
A=π(1—e
—a
2
).
因此 f(x,y)=e
—(x
2
+y
2
)
+π(1—e
—a
2
)xy
2
.
转载请注明原文地址:https://www.kaotiyun.com/show/Msf4777K
0
考研数学二
相关试题推荐
设f(χ)为连续函数,且χ2+y2+z2=∫χyf(χ+y-t)dt,则=_______.
下列广义积分发散的是().
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间(a,a+)内方程f(x)=0的实根个数为()
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能南α1,α2,α3线性表示,则对于任意常数k,必有
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设A=(α1,α2,…,αn)是实矩阵,证明ATA是对角矩阵α1,α2,…,αn两两正交.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
证明奇次方程a0x2n+1+a1x2n+…+a2x+a2n+1=0一定有实根,其中常数a0≠0.
随机试题
公开发行公司债券,应当符合的条件之一是累计债券余额不超过公司净资产的()。
关于酶的恰当论述是
A.平卧位B.患侧卧位C.术侧向下卧位D.半卧位E.健侧卧位支气管胸膜瘘者采用的体位是
不适宜铲运机工作情况的有()。
谨慎性原则要求企业不得多计收益和资产,也不得少计费用和负债。()
甲上市公司(以下简称“甲公司”)董事会由11名董事组成,董事会于2007年2月1日召开董事会会议,出席本次董事会会议的董事为7名。该次会议的召开情况以及讨论的有关问题如下:(1)为适应市场变化,经出席本次董事会会议的董事一致通过,决定改变招股说明书
陆地自然带纬度地带性的产生是以______为基础的,经度地带性的产生受______条件影响较大,在中纬度地区较明显。
如果内网的某FTP服务器允许外网访问,其NAT转换过程如下图所示,那么外网主机通过浏览器访问该服务器时使用的URL是
DriverWantedCleandrivinglicense(执照).Mustbeofgoodappearance(外貌).Agedover25.Applyto:CapesTaxi,
AremarkablethinghappenedinNewYorkrecently:thestatelegislature,ineffect,turneddownthechancetowin$700millioni
最新回复
(
0
)