首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)具有任意阶导数,且f’(x)=[f(x)]2,则f(n)(x)= ( )
设函数f(x)具有任意阶导数,且f’(x)=[f(x)]2,则f(n)(x)= ( )
admin
2019-08-12
59
问题
设函数f(x)具有任意阶导数,且f’(x)=[f(x)]
2
,则f
(n)
(x)= ( )
选项
A、n[f(x)]
n+1
B、n![f(x)]
n+1
C、(n+1)[f(x)]
n+1
D、(n+1)![f(x)]
n+1
答案
B
解析
由f’(x)=[f(x)]
2
得
f"(x)=[f’(x)]’=[(f(x))
2
]’=2f(x)f
’
(x)=2[f(x)]
3
,
这样n=1,2时f
(n)
(x)=n![f(x)]
n+1
成立.假设n=k时,f
(k)
(x)=k![f(x)]
k+1
.则当n=k+1时,有
f
(k+1)
(x)=[k!(f(x))
k+1
]’=(k+1)![f(x)]
k
f’(x)=(k+1)![f(x)]
k+2
,由数学归纳法可知,结论成立,故选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/MqN4777K
0
考研数学二
相关试题推荐
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且=fx’(x0,y0)△x+fy’(x0,y0)△y。
求
[*]
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的逆矩阵.
设f(t)具有二阶导数,求f[f’(x)],{f[f(x)]}’.
设f(x)的二阶导数在x=0处连续,且试求f(0),f’(0),f"(0)以及极限
已知函数F(x)的导函数为且则F(x)=___________.
设则f(x)的不可导点为___________。
设则F(x)在x=0处()
随机试题
________是判断组织活动合法性的依据,是衡量组织效果与效率的准则。
心力衰竭(heartfailure)
2006年某日,王某等人在叶某的饭店内吃饭后未付钱。数天后,王某等人路过叶某的饭店时,叶某便向其催讨,王某认为有损其声誉,当晚便纠集郑某等人到该店滋事,并以言语威胁,要叶某请客了事,叶某不从,王某即从郑某处取过东洋刀往叶某左臂及头部各砍一刀。此时,叶某拔出
任何情况下潜水员()。
布袋中有60块形状、大小相同的木块,每6块编上相同的号码,那么一次至少取()块才能保证其中至少有三块号码相同。
下列选项中,不具备当事人的诉讼权利义务的有
疲惫:加班
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α2=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,—1,—1,1)T,β2=(1,—1,1,—1,2)T,β3
Istimemanagementimportantornot?Why?
Theideaoftest-tubebabiesmaymakeyoueitherdelightedatthewondersofmodernmedicineorirritatedwhileconsideringthe
最新回复
(
0
)