首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)若ai≠aj(i≠j),求AT=b的解; (2)若a1=a3=a≠0,a2=a4=-a,求ATx=b的通解.
设 (1)若ai≠aj(i≠j),求AT=b的解; (2)若a1=a3=a≠0,a2=a4=-a,求ATx=b的通解.
admin
2019-01-05
32
问题
设
(1)若a
i
≠a
j
(i≠j),求A
T
=b的解;
(2)若a
1
=a
3
=a≠0,a
2
=a
4
=-a,求A
T
x=b的通解.
选项
答案
(1)D=|A
T
|=(a
4
-a
1
)(a
4
-a
2
)(a
4
-a
3
)(a
3
-a
1
) (a
3
-a
2
)(a
2
-a
1
), 若a
i
≠a
j
,(i≠j),则D≠0,方程组有唯一解,又D
1
=D
2
=D
3
=0,D
4
=D,所以方程 组的唯一解为X=(0,0,0,1)
T
; (2)当a
1
=a
3
=a≠0,a
2
=a
4
=-a时, [*] 方程组通解为X=k
1
(-a
2
,0,1,0)
T
+k
2
(0,-a
2
,0,1)
T
+(0,a
2
,O,0)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/McW4777K
0
考研数学三
相关试题推荐
下列事件中与A互不相容的事件是()
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明:(Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;(Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则
累次积分∫0cosθf(rcosθ,rsinθ)rdr可以写成()
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(A),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
已知函数z=f(x,y)的全微分出=2xdx—2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量的结果X1,…,Xn相互独立且服从正态分布N(μ,σ2),该工程师记录的是n次测量的绝对误差Zi=|Xi-μ|(i=1,2,…,n),利用Z1,…,Zn估计σ
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).当a取何值时,面积S(A)最小?
随机试题
第二代移动通信可实现高速数据传输。()
下列对药物中毒患者毒物清除的措施正确的是【】
患者女,35岁。情绪低落,有自责自罪,觉得活着没意思,是家人的累赘,在家曾先后跳河,割腕,被家人发现后送往医院,以下哪项处理不正确
家族性腺瘤息肉病为Gardner综合征
抗菌药物的合理应用原则是严格掌握适应证,治疗方案应综合患者病情、病原菌及抗菌药物特点。下列感染疾病的病原体中,抗菌药物治疗的适应证主要针对的是
女,35岁。患风湿性瓣膜病二尖瓣狭窄及关闭不全,因慢性心力衰竭,每日服用地高辛0.125mg。10天前气促,浮肿症状加重,心率120次/分。心律绝对不规则,首选的治疗是
投资利息与会计上的财务费用不同,它包括()的利息,无论它们的来源是借贷资金还是自有资金,都应计算利息。
上好一节课的先决条件是要有明确的教学目的。()
美国耶鲁大学的心理学家()试图在更为广泛的意义上解释智力行为,于上世纪80年代提出了智力的三元理论。
A.Mills征阳性B.Finkelstein试验阳性C.Spurling征阳性D.Thomas征阳性桡骨茎突狭窄性腱鞘炎表现为
最新回复
(
0
)