首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,且AB=A+B,则 ①若A可逆,则B可逆; ②若B可逆,则A+B可逆; ③若A+B可逆,则AB可逆; ④A一E恒可逆。 上述命题中,正确的个数为( )
设A,B均为n阶矩阵,且AB=A+B,则 ①若A可逆,则B可逆; ②若B可逆,则A+B可逆; ③若A+B可逆,则AB可逆; ④A一E恒可逆。 上述命题中,正确的个数为( )
admin
2019-01-19
113
问题
设A,B均为n阶矩阵,且AB=A+B,则
①若A可逆,则B可逆; ②若B可逆,则A+B可逆;
③若A+B可逆,则AB可逆; ④A一E恒可逆。
上述命题中,正确的个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
D
解析
由AB=A+B,有(A—E)B=A。若A可逆,则
|(A一B)B|=|A—E|×|B|=|A|≠0,
所以|B|≠0,即矩阵B可逆,从而命题①正确。
同命题①类似,由曰可逆可得出A可逆,从而AB可逆,那么A+B=AB也可逆,故命题②正确。
因为AB=A+B,若A+B可逆,则有AB可逆,即命题③正确。
对:于命题④,用分组因式分解,即
AB一A一B+E=E,则有(A—E)(B一E)=E,
所以得A—E恒可逆,命题④正确。
四个命题都正确,故选D。
转载请注明原文地址:https://www.kaotiyun.com/show/MbP4777K
0
考研数学三
相关试题推荐
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设在区间(0,+∞)内连续函数f(x)的原函数为F(x),则
设3阶矩阵A与B相似,λ=1,λ=一2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
设f(x)在x=0的某邻域内二阶可导,且=0,求f(0),f’(0),f"(0).
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵A=,求线性方程组Ax=b有解的概率.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设f(χ)和φ(χ)在(-∞,+∞)上有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则【】
设f(x)为二阶可导的偶函数,f(0)1,f"(0)=2且f"(x)在x=0的邻域内连续,则
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2):1,则f"’(2)=_________.
计算D2n=,其中未写出的元素都是0。
随机试题
Artwasherfavoritesubjectatschool,butshedidadegreeingeography.
促进;提升v.p________
内环境是指【】
患者年高体衰,病属虚寒,久已卧床不起。今日晨起突然面色泛红,烦热不宁,语言增多,并觉口渴。舌淡,脉大而无根。其病机是()
可行性研究综合研究建设项目的()。
关于全面市场调查的说法,错误的是()。
根据公司法律制度的规定,下列表述中,正确的是()。
春节晚会渐渐成为老百姓特殊的“年夜饭”。晚会往往会以欢腾喜庆的《春节序曲》为开场和结尾音乐,其音乐形式是()
【2019-18】“朱子读书法”中的“切己体察”是指()。
设工程中有2个窗体:Forml、Form2,Forml为启动窗体。Form2中有菜单,其结构如表。要求在程序运行时,在Forml的文本框Tcxtl中输入口令并按同车键(回车键的ASCII码为13)后,隐藏Forml,显示Form2。若口令为“Teacher
最新回复
(
0
)