首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2019-03-21
68
问题
设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
,…,η
s
分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
充分性 由γ
1
,γ
2
,…,γ
r
,η
1
,η
2
,…,η
s
线性相关,知存在k
1
,k
2
,…,k
r
,l
1
,l
2
,…,l
r
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0, 令ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
s
,l
1
,l
2
,…,l
s
全为0),且ξ=一l
1
η
1
一l
2
η
2
一…一l
s
η
s
,即一个非零向量ξ既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以Ax=0和Bx=0有非零公共解. 必要性 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
且ξ=一l
1
η
1
一l
2
η
2
一…一l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0, 从而γ
1
,γ
2
,…,γ
r
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/M1V4777K
0
考研数学二
相关试题推荐
函数f(x)=x22x在x=0处的竹阶导数f(n)(0)=________.
设函数fi(x)(i=1,2)具有二阶连续导数,且fi"(x0)<0(i=1,2).若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有
设函数f(x)=(α>0,β>0).若f’(x)在x=0处连续,则
设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)=
求函数f(x)=在x=0点处带拉格朗日型余项的n阶泰勒展开式.
设A=当a,b为何值时,存在矩阵C使得AC一CA=B,并求所有矩阵C.
设e<a<b<e2,证明ln2b一ln2a>
设A为4阶实对称矩阵,且A2+A=0.若A的秩为3,则A相似于
求无穷积分J=
随机试题
Itisveryinterestingtonotewherethedebateaboutdiversity(多样化)istakingplace.Itistakingplaceprimarilyinpolitical
睡眠呼吸暂停综合征指
工程款支付一般按时间大致分为()。
纳税评估的主要工作内容包括( )。
下列关于股份有限公司董事会的组成表述正确的是()。
依据《民政部、财政部关于加快推进社区社会工作服务的意见》要求,通过政府购买服务的方式。逐步将街道和乡镇政府面向社区的事务性、服务性工作委托有专业能力的社会组织承接。()
根据《党政机关公文处理工作条例》,下列说法正确的一项是()。
战略决策是指在企业内贯彻的一种决策活动,通常包括组织目标、方针的确定.组织机构的调整,企业产品的更新换代、技术改造等,这些决策牵涉组织的方方面面,具有长期性和方向性。下列属于战略决策的是()。
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
对数据表进行筛选操作,结果是()。
最新回复
(
0
)