首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
admin
2016-07-11
78
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数,试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型?
选项
答案
由已知条件知,对任意的x
1
,x
2
,…,x
n
,恒有f(x
1
,x
2
,…,x
n
)≥0,其中等号成立的充分必要条件是 [*] 根据正定的定义,只要x≠0,恒有x
T
Ax>0,则x
T
Ax是正定二次型,为此,只要方程组①仅有零解,就必有当x≠0时,x
1
+a
1
x
2
,x
2
+a
2
x
3
,…不全为0,从而f(x
1
,x
2
,…,x
n
)>0,亦即f是正定二次型. 而方程组①中只有零解的充分必要条件是系数行列式 [*] 即当a
1
a
2
…a
n
≠(一1)
n
时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LlyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
Storytellingisoneofthefewhumanfeaturesthataretrulyuniversalacrosscultureandthroughallofknownhistory.Anthropo
Shoppingforclothesisnotthesameexperienceforamanasitisforawoman.Amangoesshopping(11)______heneedssometh
特征,特色n.f______
假设你是李梅,想申请加入英语俱乐部。请给俱乐部负责人Kelvin写一封150词左右的英文信,内容应涉及自己的基本情况,并咨询相关事宜,如入会方式、条件、会费、活动等。
阅读下面段落,按要求回答问题。于是项王乃欲东渡乌江。乌江亭长舣船待,谓项王曰:“江东虽小,地方千里,众数十万人,亦足王也。愿大王急渡。今独臣有船,汉军至,无以渡。”项王笑日:“天之亡我,我何渡为!且籍与江东子弟八千人渡江而西,今无一人还,纵江东父
结庐在人境。而无车马喧。问君何能尔?心远地自偏。采菊东篱下,悠然见南山。山气日夕佳。飞乌相与还。此中有真意,欲辩已忘言。本诗的风格特征是什么?
设矩阵判定A是否可以与对角矩阵相似,若可以,求可逆矩阵P和对角矩阵A,使得P-1AP=A。
已知4元线性方程组在有解时,求出其通解(要求用它的一个特解和导出组的基础解系表示).
设A,B都为n阶对称矩阵,则AB也为对称矩阵的充要条件为_______.
已知四阶行列式D的第一行元素依次为1,3,0,一2,第三行元素对应的代数余子式依次为8,k,一7,10,则k=_______.
随机试题
湿热腰痛的主方是
A、TaketheGREtestagainin8weeks.B、Calltocheckhisscores.C、Bepatientandwait.D、Inquirewhenthetestscoresarerele
Itiscurioushowchildrenalwaysbehavemuchworsewhentheyare________holiday.
患者,女,27岁。怀孕6个月,怕热、心悸、消瘦2个月。体重下降2.5kg,易饥、多食、多饮,大便次数3~4次/日。易怒、脾气差。应该考虑的疾病是
关于麻醉药品和第一类精神药品的相关规定,以下说法错误的是
托马斯、切斯把幼儿的气质划分为哪几种类型?
社区服务站是非营利性公共服务机构,要坚持()的工作原则,为社区居民提供优质服务。
[2011年真题]统计数据表明,近年来,民用航空飞机的安全性有很大提高。例如,某国2008年每飞行100万次发生恶性事故的次数为0.2次,而1989年为1.4次,从这些年的统计数字看,民用航空恶性事故发生率成下降趋势,由此看出,乘飞机出行越来越安全。以下哪
指导国家间关系的基本准则是和平共处五项原则。和平共处五项原则的精髓是
AfterSusanJoycewaslaidofffromDigitalEquipmentCorp.,shewashorrifiedtohearoftwosuicidesinherlayoffgroup.Such
最新回复
(
0
)