首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
admin
2019-05-11
71
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0,证明:
(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由加强型的积分中值定理知,至少存在一点c∈(a,b),使得[*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0,G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
2
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0,则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f”(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
),使得F’(η)=0,故有 f"(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LfV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶连续可导,且f(0)=1,f(2)=3,f′(2)=5,则∫01χf〞(2χ)dχ=_______.
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=|E-3A|=0,则|B-1+2E|=_______.
求微分方程χy′+(1-χ)y=e2χ(χ>0)的满足y(χ)=1的特解.
求微分方程的通解.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数k=,求y=y(x).
设f(x),g(x)在区间[一a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分
曲线y=的斜渐近线方程为_________。
(02年)某闸门的形状与大小如图2.11所示.其中直线l为对称轴.闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
随机试题
一位总统候选人在竞选辩论中对他的对手说:“挣钱的办法有成千上万种,但只有一种是诚实的。”对手问:“哪一种?”他回答:“正好是您不知道的那一种。”他通过这些话讽刺了对手什么?()
贫血性梗死常发生于
窜痛多属( )。脱肛多属( )。
合同之债的法律适用同时涉及其他方面的法律适用,综合涉及意思自治原则。根据我国有关法律规定,关于涉外民事关系的法律适用,下列哪个领域采用当事人意思自治原则?()
在以下价值指标中,一般能通过“数量×单价”的方法计算出来的是( )。
在上海证券交易所上市交易的某只股票,2008年末的每股税后利润为0.20元,市场利率为2.5%。请根据以上资料回答下列问题:该只股票的静态价格为()元。
王某年满16周岁,在县城经营一家汽车修理店,经营状况良好,王某属于()。
闻一多在其理论文章《诗的格律》中提出诗歌的“三美”主张,下列不属于“三美”的是()。
你是一名社保局工作人员,在做农村基层政策宣传时,有人站起来大声说社保是骗人的,政策没准儿哪天就变,引起了现场的混乱,请问你怎么办?
Scientistswillbeabletofreezedyingpeopleandrevivethemyearslaterwhenacurefortheirdiseasehasbeenfoundopening
最新回复
(
0
)