首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
admin
2015-05-07
93
问题
已知α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
,
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)当a=3时,证明α
1
,α
2
,α
3
,α
4
可表示任一个4维列向量.
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关[*]秩r(α
1
,α
2
,α
3
)<3.由于 [*] 所以a=-3. (Ⅱ)设α
4
=(x
1
,x
2
,x
3
,x
4
)
T
,则有(α
1
,α
4
)=0,(α
2
,α
4
)=0,(α
3
,α
4
)=0,即 [*] 所以α
4
=k(19,-6,0,1)
T
,其中k≠0. (Ⅲ)由于|α
1
,α
2
,α
3
,α
4
| [*] =-12×348k≠0. 所以x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α恒有解,即任一4维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出. 或者由(Ⅰ)知a=3时,α
1
,α
2
,α
3
必线性无关,那么:若 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0, 用[*]左乘上式两端并利用[*]α
1
=[*]α
2
=[*]α
3
=0,有k
4
[*]α
4
=0,又α
4
≠0,故必有k
4
=0. 于是k
1
α
1
+k
2
α
2
+k
3
α
3
=0.由α
1
,α
2
,α
3
线性无关知必有k
1
=0,k
2
=0,k
3
=0,从而α
1
,α
2
,α
3
,α
4
必线性无关.而5个4维列向量必线性相关,因此任一个4维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/La54777K
0
考研数学一
相关试题推荐
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位矩阵.计算行列式|A-3E|的值.
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则().
下列命题正确的是().
已知线性方程组问a满足什么条件时,方程组有唯一解?并给出唯一解.
设函数f(u,v)可微,若z=f[x,f(x,x)],求
设F(u,v)对其变元u,v具有二阶连续偏导数,并设z=,则=________.
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
设二次型f(χ1,χ2,χ3)=χ12+χ22+χ32+4χ1χ2+4χ1χ3+4χ2χ3,写出f的矩阵A,求出A的特征值,并指出曲面f(χ1,χ2,χ3)=1的名称.
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。当液面高度为π/4(m)时,求液面上升的速率
设Z;=Xi+Xn+i=1,2,…,n),为从总体Z中取出的样本容量为n,的样本.则E(Zi)=E(Xi)+E(Xn+i)=μ+μ=2μD(Zi)=D(Xi+Xn+i)=D(xi)+D(Xn+i)(Xi与Xn+i相互独立)=σ2+σ2=2σ2∴Z-N
随机试题
特种行业许可是公安行政许可的一种。()
某项工作交给甲需要6天完成,交给乙需要5天完成,交给丙需要9天完成,现交由甲、乙、丙三人依次轮流工作,则完成这项工作至少需要()天(不足一天按一天计算).
以下关于结核性颈淋巴结炎的叙述中,哪项是错误的
某公司4月30日的银行存款日记账账面余额为481500元,银行对账单余额为501500元。经逐笔核对,发现有以下未达账项:(1)29日银行代企业收款41000元,企业尚未收到收款通知;(2)30日银行代付电费2500元,企业尚未收到付款通知;(3)30日企
已知£时刻的费用偏差=t时刻预算费用-t时刻发生的实际费用。那么________。
行政诉讼中,被诉行政机关负责人应当出庭应诉。不能出庭的,则()。
吕叔湘老先生说,人长着嘴巴“不光能吃饭,还能说话”。但长久以来,人们说话的权利却被束缚着。在古代的时候,人分尊卑贵贱,地位常使卑者噤若寒蝉。伏尔泰说:“我不同意你的观点,但我誓死捍卫你说话的权利”。在康德那里,就是“启蒙”。不是要将自己的观点强行灌输给他人
近几十年来,人们发明了各种各样的药物来毒杀老鼠。可是人们发现,在一些老鼠经常出入的地方放置老鼠药的方法越来越没有效果,无论人们将药物添加到对于老鼠来说多么美味的食物之中,老鼠都会对这些送来的“美味”置之不理。根据这一现象,得到的可能解释是:老鼠的嗅觉异常灵
设x>0,微分方程的特解是y=______.
Allcompetitiveskiandsnowboardingeventsnowtakeplacelargelyonman-madesnow.Unlikeitsnaturalcounterpart,themachine
最新回复
(
0
)